

Professional
Windows® PowerShell for Exchange

Server 2007 Service Pack 1
Acknowledgments ... xxiii
Introduction ... xxv

Part I: PowerShell for Exchange Fundamentals

Chapter 1: Getting Started with Windows PowerShell 3

Chapter 2: Using Exchange Management Shell ... 33

Chapter 3: Using PowerShell to Deploy Exchange Server 2007 65

Chapter 4: Working with User and Group Objects .. 83

Chapter 5: Public Folders ... 139

Part II: Working with Server Roles

Chapter 6: Configuring the Client Access Server Role 163

Chapter 7: Configuring the Hub Transport Role ... 191

Chapter 8: Configuring the Mailbox Server Role .. 217

Chapter 9: Configuring the Edge Transport Server Role 235

Chapter 10: Unified Messaging .. 273

Part III: Working with PowerShell in a Production Environment

Chapter 11: Exchange Server 2007 Routing ... 297

Chapter 12: Working with Continuous Replication 327

Chapter 13: Single Copy Clusters ... 363

Chapter 14: Troubleshooting Exchange Issues .. 389

(Continued)

ffirs.indd iffirs.indd i 12/17/07 4:07:52 PM12/17/07 4:07:52 PM

Part IV: Automating Administration

Chapter 15: User, Group, and Public Folder Administration 425

Chapter 16: Reporting, Maintenance, and Administration 465

Chapter 17: Using the .NET Framework to Automate Exchange PowerShell
Tasks ... 485

Index .. 497

ffirs.indd iiffirs.indd ii 12/17/07 4:07:53 PM12/17/07 4:07:53 PM

Professional
Windows® PowerShell for Exchange

Server 2007 Service Pack 1

ffirs.indd iiiffirs.indd iii 12/17/07 4:07:53 PM12/17/07 4:07:53 PM

ffirs.indd ivffirs.indd iv 12/17/07 4:07:53 PM12/17/07 4:07:53 PM

Professional
Windows® PowerShell for Exchange

Server 2007 Service Pack 1

Joezer Cookey-Gam

Brendan Keane

Jeffrey Rosen

Jonathan Runyon

Joel Stidley

Wiley Publishing, Inc.

ffirs.indd vffirs.indd v 12/17/07 4:07:53 PM12/17/07 4:07:53 PM

Professional Windows® PowerShell for Exchange
Server 2007
Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2008 by Wiley Publishing, Inc., Indianapolis, Indiana

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-22644-5

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted
under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600.
Requests to the Publisher for permission should be addressed to the Legal Department, Wiley Publishing,
Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or online at
http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or
warranties with respect to the accuracy or completeness of the contents of this work and specifically
disclaim all warranties, including without limitation warranties of fitness for a particular purpose. No
warranty may be created or extended by sales or promotional materials. The advice and strategies contained
herein may not be suitable for every situation. This work is sold with the understanding that the publisher is
not engaged in rendering legal, accounting, or other professional services. If professional assistance is
required, the services of a competent professional person should be sought. Neither the publisher nor the
author shall be liable for damages arising herefrom. The fact that an organization or Website is referred to in
this work as a citation and/or a potential source of further information does not mean that the author or the
publisher endorses the information the organization or Website may provide or recommendations it may
make. Further, readers should be aware that Internet Websites listed in this work may have changed or
disappeared between when this work was written and when it is read.

For general information on our other products and services or to obtain technical support, please contact our
Customer Care Department within the U.S. at (800) 762-2974, outside the U.S. at (317) 572-3993 or fax (317)
572-4002.

Library of Congress Cataloging-in-Publication Data is available from the publisher.

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related
trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the
United States and other countries, and may not be used without written permission. Windows is a registered
trademark of Microsoft Corporation in the United States and/or other countries. All other trademarks are
the property of their respective owners. Wiley Publishing, Inc., is not associated with any product or vendor
mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not
be available in electronic books.

ffirs.indd viffirs.indd vi 12/17/07 4:07:53 PM12/17/07 4:07:53 PM

www.wiley.com

 To my wife Isu for her support even while caring for our newborn daughter Hallel, also to Dad and Mum for
stirring my interest on an Engineering career path, and most especially to Jehovah, my best friend, without which

this would have been impossible.
— Joezer Cookey - Gam

 Thanks to my wife for her support and to my friends and family for understanding my mumblings about .NET
references, variables, and why this piece of code worked last time I used it. I would also like to thank Joel Stidley for

providing this opportunity, mentorship, and for his friendship.
— Brendan Keane

 To my wife, Christine, and our daughters, Madison and Isabel, I love you and thanks for the patience and support.
Also thanks to Mom and Dad for everything. Thanks to Joel Stidley for offering me the chance to work on this book,

as well as the co - authors, technical reviewers, and editors.
— Jeffrey Rosen

 To Lisa and Evan. Thanks for giving me purpose.
 — Jonathan Runyon

 To my wife Andrea, and my children Ethan and Jaelyn for putting up with me for the last few months
of extra work.
— Joel Stidley

ffirs.indd viiffirs.indd vii 12/17/07 4:07:54 PM12/17/07 4:07:54 PM

ffirs.indd viiiffirs.indd viii 12/17/07 4:07:54 PM12/17/07 4:07:54 PM

 About the Authors
 Joezer Cookey - Gam holds a Bachelor of Technology degree in Electrical Engineering (Electronics Major)
from the Rivers State University of Science and Technology in Nigeria. He is a Microsoft Certified
Systems Engineer with focus on messaging. He began his IT career as a Network Engineer and Exchange
administrator supporting medium to large Enterprise networks. In this role he provided solutions for
LinkServe Limited, a leading Internet service provider in Nigeria. He joined Microsoft in 2001 and
currently is a Support Escalation Engineer supporting enterprise Exchange customers.

 Brendan Keane is currently an information security principal specializing in Microsoft technologies.
Brendan began his tenure with Exchange 5.5 and has enjoyed working more with each new release.

 Jeffrey Rosen has a Masters of Business Administration from Case Western Reserve Weatherhead School
of Management specializing in Information Systems. He is a Microsoft Certified Architect, an MCSE
specializing in messaging and security, and a CISSP. He began his career working with Microsoft Mail
and Novell Netware. Since then, Jeffrey has been working for Microsoft Consulting Services for nine
years, working on large and complex Exchange deployments.

 Jonathan Runyon has worked in the IT Industry for more than 17 years. He joined Microsoft in 2001 and
has worked exclusively on Exchange Server support ever since. Jonathan recently contributed to the
development of Exchange Server 2007 internal training for Microsoft Customer Service and Support.
He is a Microsoft Certified Systems Engineer and MCSA, specializing in messaging.

 Joel Stidley has been working with Microsoft Exchange since the Exchange Server 5.0 beta releases and
hasn ’ t missed deploying a release since. He has been working with the Microsoft Exchange JDP/TAP
program since Exchange Server 2000 Service Pack 3, and has been running Exchange Server 2007 in
production since 2005. Joel also founded ExchangeExchange.com, an Exchange - focused community
website in 2004 where he blogs and provides forums for discussing Exchange and PowerShell
information. Currently he is a Senior Solutions Engineer at Terremark Worldwide Inc where he works
with a variety of storage, virtualization, and messaging technologies.

ffirs.indd ixffirs.indd ix 12/17/07 4:07:54 PM12/17/07 4:07:54 PM

ffirs.indd xffirs.indd x 12/17/07 4:07:54 PM12/17/07 4:07:54 PM

Credits
Executive Editor
Chris Webb

Development Editor
Sydney Jones

Technical Editor
Josh Maher

Production Editor
Elizabeth Ginns Britten

Copy Editor
Kim Cofer

Editorial Manager
Mary Beth Wakefi eld

Production Manager
Tim Tate

Vice President and Executive Group Publisher
Richard Swadley

Vice President and Executive Publisher
Joseph B. Wikert

Project Coordinator, Cover
Lynsey Stanford

Proofreader
Sossity Smith

Indexer
Jack Lewis

ffirs.indd xiffirs.indd xi 12/17/07 4:07:54 PM12/17/07 4:07:54 PM

ffirs.indd xiiffirs.indd xii 12/17/07 4:07:54 PM12/17/07 4:07:54 PM

Contents

Acknowledgments xxiii
Introduction xxv

Part I: PowerShell for Exchange Fundamentals 1

Chapter 1: Getting Started with Windows PowerShell 3

What Is Windows PowerShell? 3
Shell History 4
When Shells Are Better than GUI Interfaces 4
Common Shell Limitations 5
The Power Behind PowerShell 5

PowerShell Basics 6
The Command-Line Interface 6
Cmdlets 8
Discovering Commands and Getting Help 15
Using Pipelines 23
Running Scripts 29

Preparing Exchange Management Shell 30
Summary 31

Chapter 2: Using Exchange Management Shell 33

Why Learn Exchange Management Shell? 34
Shell versus Console 34

Direct Comparison 34
Exchange Management Console 37
Exchange Cmdlet Sets 38

Working from the Command Line 41
Getting Around 41
Windows PowerShell Drives 43
Working with Output 45
Using Variables, Aliases, and Functions 48
Using Profiles 52

ftoc.indd xiiiftoc.indd xiii 12/17/07 4:08:45 PM12/17/07 4:08:45 PM

xiv

Contents

Working with Windows 54
Controlling Processes 54
Controlling Services 55
Working with Windows Registry 57
Working with Event Logs 60

Summary 64

Chapter 3: Using PowerShell to Deploy Exchange Server 2007 65

Deploying Exchange Server 2007 66
Hardware Requirements 66
Software Requirements 68
Domain Requirements 69
Domain Preparation 70

Server Installation 72
/mode or /m 72
/roles or /r 72
/OrganizationName or /on 73
/TargetDir or /t 73
/SourceDir or /s 73
/UpdatesDir or /u 73
/DomainController or /dc 74
/AnswerFile or /af 74
/DoNotStartTransport 74
/EnableLegacyOutlook 74
/LegacyRoutingServer 74
/EnableErrorReporting 74
/NoSelfSignedCertificate 74
/AdamLdapPort 75
/AdamSslPort 75
/AddUmLanguagePack 75
/RemoveUmLanguagePack 76
Additional Setup Switches Available for Clustered Installs 76

Disaster Recovery 76
Deployment Scenarios 77

Single Server Deployment 78
Standard Deployment 78
Complex Deployments 80

Summary 81

ftoc.indd xivftoc.indd xiv 12/17/07 4:08:46 PM12/17/07 4:08:46 PM

xv

Contents

Chapter 4: Working with User and Group Objects 83

Working with Recipients 84
Recipient Scope in the Exchange Management Shell 84

User and Group Object Types 86
Get-Recipient 87
Get-Mailbox 88
Get-MailContact 89
Get-Group 90
Get-DistributionGroup 91
Get-DynamicDistributionGroup 92

Exchange Server 2007 Recipient Objects 96
Exchange Server 2007 Group Objects 102

Mail-Enabled Universal Distribution Groups 102
Mail-Enabled Universal Security Groups 102
Mail-Enabled Nonuniversal Groups 103
Dynamic Distribution Groups 103

Creating and Modifying User Objects 105
New-Mailbox 106
Set-Mailbox 107
Enable-Mailbox 108
Remove-Mailbox 109
Set-CASMailbox 110
Export-Mailbox 111
Import-Mailbox 112

Creating a User Mailbox 113
Modifying a User Mailbox 119

Creating a Resource Mailbox 122
Modifying a Resource Mailbox 123

Creating a Mail User and Mail Contact 126
Modifying a Mail User and Mail Contact 127

Creating and Modifying Group Objects 128
The Dynamic Distribution Group 129
Bulk Recipient Management 130

Bulk Creating Mailboxes 131
Working with Templates 133
Bulk-Enabling Existing Users 135
Bulk Modifying Mailbox Attributes 136
Bulk Reconnect Mailboxes 136

Summary 137

ftoc.indd xvftoc.indd xv 12/17/07 4:08:46 PM12/17/07 4:08:46 PM

xvi

Contents

Chapter 5: Public Folders 139

Database Administration 140
Installing Public Folders 140
Creating a Public Folder Database 140
Get/Set Public Folder Database Information 142
Removing a Public Folder Database 144

Working with Permissions 144
Client Folder Permissions 145
Client Folder Permissions Scripts 146
Administrative Folder Permissions 146
Top-Level Folders 148

Folder and Content Administration 149
Working with Folders 150
Creating and Removing Folders 150
Removing Public Folders 152

Summary 160

Part II: Working with Server Roles 161

Chapter 6: Configuring the Client Access Server Role 163

User Settings 164
Disabling Outlook Modes 165
Disabling Outlook Versions 166

Enabling POP3/IMAP4 167
Certificates 170

Certificate Types 171
Generating the Certificate 172
Obtaining the Certificate 174
Importing the Certificate 175
Enabling the Certificate 176
Copy the Certificate 176

Autodiscover 177
Proxy and Redirection 181
Outlook Anywhere 183
Working with the Offline Address Book 184

Creating the Offline Address Book 184
Address Book Generation 186

LinkAccess 186
Summary 189

ftoc.indd xviftoc.indd xvi 12/17/07 4:08:46 PM12/17/07 4:08:46 PM

xvii

Contents

Chapter 7: Configuring the Hub Transport Role 191

The Transport Server Architecture 192
Configuring the Hub Transport Server 197

Creating and Modifying Connectors 201
New-ReceiveConnector 202
New-SendConnector 203
Configuring Receive Connectors 203
Setting Relay Restrictions and Submit Permissions 206
Configuring Send Connectors 208
Setting Send Connector Permissions and Authentication 210
Linking Connectors 210
Configuring a Routing Group Connector 212
Configuring Foreign Connectors 212

Understanding Accepted Domains and Email Address Policies 213
Accepted Domains 214
Email Address Policies 214

Summary 214

Chapter 8: Configuring the Mailbox Server Role 217

Storage Groups 217
Creating Storage Groups 218
Moving Storage Groups 218
Removing Storage Groups 219

Mailbox Stores 219
Creating Databases 219
Configuring Databases 220
Removing Databases 222

Managing Mailboxes 222
Recovery Storage Groups 225

Create the RSG 226
Create the RSG Database 227
Restore the Database 227
Mount the Database 228
Restore Mail 228

Public Folders 231
Summary 233

ftoc.indd xviiftoc.indd xvii 12/17/07 4:08:47 PM12/17/07 4:08:47 PM

xviii

Contents

Chapter 9: Configuring the Edge Transport Server Role 235

Overview of the Edge Transport Server Role 237
Message Categorization 238
Active Directory Application Mode 238
Edge Subscription and Synchronization 239
Features Introduced in Exchange Server 2007 SP1 240

Edge Transport Server Configuration 241
New-EdgeSubscription 242
Remove-EdgeSubscription 243
Start-EdgeSynchronization 243
Test-EdgeSynchronization 244
Preparing the Edge Transport Server 245
Preparing the Hub Transport Server 253
Verifying Configuration 257
Edge Cloning 263

Transport Agents 263
Get-TransportAgent 264
Set-TransportAgent 264
Enable-TransportAgent 264
Address Rewrite Agent 266
Edge Rules Agent 266
Anti-Spam Agents 266

Summary 271

Chapter 10: Unified Messaging 273

Creating UMDialPlan, UMIPGateway, and UMMailboxPolicy, and Setting up
the UM Server 275
Setting UM Features using the Set-UM Cmdlets 278

Setting the UM Dial Plan 278
Setting the UM IP Gateway 281
Setting the UM Mailbox Policy 282

Retrieving UM Information using the Get-UM Cmdlets 284
UM User Management 286
AutoAttendants 288
Removing and Disabling UM Features 291
Summary 293

ftoc.indd xviiiftoc.indd xviii 12/17/07 4:08:47 PM12/17/07 4:08:47 PM

xix

Contents

Part III: Working with PowerShell in a Production
Environment 395

Chapter 11: Exchange Server 2007 Routing 297

Routing Changes in Exchange 298
Basics of Exchange Server 2007 Routing 299

Active Directory Site-Based Routing 300
Active Directory Sites 300
Route Selection Process 301
Next Hop Selection Process 302

Routing Troubleshooting 308
Common Errors 308
Routing Log Viewer 309
Message Tracking 310

Working with Active Directory Sites 313
Determining Site Membership 313
Dedicated Exchange Sites 314
Site Links 314
Working with Hub Sites 316

Coexistence with Exchange 2003 317
Link State Considerations 318
Link State Islands 319

Coexistence Routing 322
Summary 325

Chapter 12: Working with Continuous Replication 327

Understanding Continuous Replication 328
Clustered Continuous Replication 329
Local Continuous Replication 330
Standby Continuous Replication 332

Installing LCR, CCR, SCR 334
Installing Local Continuous Replication (LCR) 334
Installing Clustering Continuous Replication (CCR) 336

Seeding 346
Monitoring 349
Failover Types 353

Failover in Local Cluster Replication 353
Failover in Continuous Cluster Replication 354
Failover in Standby Continuous Replication 357

ftoc.indd xixftoc.indd xix 12/17/07 4:08:47 PM12/17/07 4:08:47 PM

xx

Contents

Failback 359
Failback in Local Continuous Replication 359
Failback in Cluster Continuous Replication 360
Failback in Standby Continuous Replication 360

Summary 361

Chapter 13: Single Copy Cluster 363

Automating an MSCS Install 364
Hardware Requirements 364
Software Requirements 364
Microsoft Server Cluster Installation 365
Installing Exchange on an SCC Cluster 380

Resource Management 383
Putting It All Together 385
Summary 388

Chapter 14: Troubleshooting Exchange Issues 389

Determining Server Health 390
Determining Exchange System Health 393
Testing the Anti-Spam Functions 395

Test-IPAllowListProvider 395
Test-IPBlockListProvider 396
Test-SenderID 397

Troubleshooting the Client Access Server Role Functions 399
Test-OutlookWebServices 399
Test-ActiveSyncConnectivity 400
Test-OwaConnectivity 402

Testing the Web Services with Test-WebServicesConnectivity 404
Troubleshooting the Mailbox Server Role Functions 405

Troubleshooting MAPI Connectivity 405
Testing Mailflow 406
Testing the Exchange Search Service 408

Troubleshooting Edge Synchronization 409
Troubleshooting Unified Messaging Connectivity 410
Using Get and Set Cmdlets to Gather System and Application Data 411

Using Get-Eventlog 412
Using Get-Message 414
Tracking Messages 417

Working with Event Logging Levels 420
Summary 422

ftoc.indd xxftoc.indd xx 12/17/07 4:08:48 PM12/17/07 4:08:48 PM

xxi

Contents

Part IV: Automating Administration 423

Chapter 15: User, Group, and Public Folder Administration 425

Sample Scripts for Creating New Mailbox-Enabled Users 425
The Simple Script 426
The Improved Script 432
Adding Group Assignments for the New Users 443
Load Balancing User Creation Across Mailbox Servers 449

Creating a Public Folder for the New Users 454
Examining the newuser-publicfolder.ps1 Script 457
Running the newuser-publicfolder.ps1 Script 462

Summary 464

Chapter 16: Reporting, Maintenance, and Administration 465

Reading in Files 465
Exporting Data 468
Sending Email from PowerShell 469
Real-World PowerShell Examples 469

Applying Default Settings 469
Reporting Tasks with PowerShell 471
Reporting Mailbox Size 475
Simple Monitoring with PowerShell 483

Summary 484

Chapter 17: Using the .NET Framework to Automate Exchange
PowerShell Tasks 485

Accessing PowerShell from the .NET Framework 485
Starting a Web Project 486
The Windows PowerShell Runspace 487
Solving Problems with PowerShell and the .NET Framework 495
Summary 496

Index 497

ftoc.indd xxiftoc.indd xxi 12/17/07 4:08:48 PM12/17/07 4:08:48 PM

ftoc.indd xxiiftoc.indd xxii 12/17/07 4:08:48 PM12/17/07 4:08:48 PM

 Acknowledgments

 This book would not have been possible without all of the contributions of time and effort from the Wrox
staff and the detailed work of the authors and editors.

 First we have to thank Chris Webb for this opportunity to write, as well as his patience and persistence
in getting this book written.

 We would also like to thank Sydney Jones for doing an awesome job keeping the project running and
Joshua Maher for turning around the technical edits quickly and accurately. Also, we would be remiss if
we didn ’ t thank Liz Britten and Kim Cofer for an amazing job with copy editing.

 The authors all would like to thank our families for their support during the writing of this book.
Writing a book always seems to take longer than you would expect, so having a dedicated and loving
support team at home is essential to any successful project.

 Joezer Cookey - Gam in particular would also like to thank David Santamaria, Bill Long, Austin Audu
and Robert Zeigler, the phenomenal Exchange Escalation Engineers who allowed him to bounce off his
ideas, questions and solutions.

 Lastly, we have to thank the Microsoft Exchange product team for not listening to the nay - sayers
(including some of us authors) and forging ahead with PowerShell as the management interface for
Exchange Server and providing amazingly detailed documentation to get us started.

flast.indd xxiiiflast.indd xxiii 12/17/07 4:08:22 PM12/17/07 4:08:22 PM

flast.indd xxivflast.indd xxiv 12/17/07 4:08:23 PM12/17/07 4:08:23 PM

Introduction

Windows PowerShell is a new command-line administration tool that is a giant step forward from
previous command-line tools. Often, each Microsoft product would develop separate tools for
command-line management, and each of these tools usually had a very narrow feature list and
varied command syntax. This would usually lead developers to have to use a variety of management
APIs to accomplish even the simplest tasks. PowerShell is meant to create a unified management tool
for all Microsoft products, and to simplify management.

The first major product to be released with Windows PowerShell as its management interface was
Exchange Server 2007, a complete rewrite of the familiar Exchange management tools using PowerShell
to provide all management functions. The GUI management tools were built on top of PowerShell and
provide only a subset of the functions available from the command line.

Initial feedback during the beta releases was that providing a mostly PowerShell interface was not
something even experienced administrators would embrace. As the beta releases of the product
continued the Exchange Management Shell (the PowerShell-based management tool for Exchange Server
2007) continued to improve as did the Exchange Management Console (the GUI-based management
tool).

Slowly, the Management Shell has begun to win over many of the opposers because it provides more
functionality, it’s often quicker, and it provides more power to the administrator. Many administrators
now prefer to use the Exchange Management Shell over the Exchange Management Console for these
reasons.

Although groundwork will be laid for new Exchange features, this book is tailored to current Exchange
professionals wanting to take full advantage of the new Management shell, PowerShell, for deploying,
configuring, managing, and maintaining an Exchange Server 2007 organization. Details for many of the
PowerShell commands are provided along with real-world examples for using these commands.

Time is spent explaining many of the key commands along with details behind using them. Additional
time is spent showing how to put these commands together to show Exchange administrators how to
become comfortable with PowerShell and use PowerShell to manage and streamline their Exchange
Server 2007 organization.

Who This Book Is For
This book in intended to for Exchange professionals who are looking to become comfortable with
Windows PowerShell and want to use PowerShell to effectively manage, automate, and streamline their
Exchange 2007 organization. Having some knowledge of Exchange Server 2007 is helpful but not
required because we spend time discussing some of the new features and how they work.

flast.indd xxvflast.indd xxv 12/17/07 4:08:23 PM12/17/07 4:08:23 PM

xxvi

Introduction

What This Book Covers
The first two chapters cover the basics on using PowerShell, so those with little to no experience with
PowerShell should be sure to read those chapters with keen interest.

After Chapter 2, the book takes a deeper dive into the Exchange PowerShell cmdlets and how to
combine their use to simplify and automate with real-world examples.

How This Book Is Structured
The book is separated into four main parts. The first section helps the reader become familiar with
Windows PowerShell and the Exchange Server 2007 Management Shell. Time is spent discussing the
roots of PowerShell as well as the fundamentals for using PowerShell with Exchange.

The second section of the book focuses on working with the new Exchange server roles. The cmdlets and
features that are specific to each of these roles are discussed and real examples are used to help identify
the appropriate times that the cmdlets would be used.

The third section brings PowerShell into your environment, showing examples of how to work with
users and groups. Also, time is spent working with clusters and troubleshooting with PowerShell.

The final section puts together all of the things that have been discussed previously. Time is spent with a
number of examples, explaining how they work and providing a basis for you to modify the examples
for your own environment.

What You Need to Use This Book
To be able to follow along in this book it would be beneficial to have a working Exchange organization
with at least one Exchange Server 2007 computer. Microsoft provides a number of resources for this on
its website. You can download a virtual hard disk (VHD) with Exchange Server 2007 already installed to
be able to run on Microsoft Virtual Server, or you can also download a trial version of Exchange to install
on your physical hardware.

You can download an Exchange Server 2007 virtual machine or obtain the trial software at
http://technet.microsoft.com/en-us/exchange/bb330851.aspx.

Chapter 17 has some C# code that can be run within Microsoft Visual Studio 2005. If you do not have
Visual Studio 2005, you can download Visual Web Developer Express to run the examples in the chapter.

Conventions
To help you get the most from the text and keep track of what’s happening, we’ve used a number of
conventions throughout the book.

flast.indd xxviflast.indd xxvi 12/17/07 4:08:23 PM12/17/07 4:08:23 PM

xxvii

Introduction

Boxes like this one hold important, not-to-be forgotten information that is
directly relevant to the surrounding text.

Notes, tips, hints, tricks, and asides to the current discussion are offset and placed in italics like this.

As for styles in the text:

❑ We highlight new terms and important words when we introduce them.

❑ We show keyboard strokes like this: Ctrl+A.

❑ We show filenames, URLs, and code within the text like so: persistence.properties.

❑ We present code in two different ways:

We use a monofont type with no highlighting for most code examples.

We use gray highlighting to emphasize code that’s particularly important in the
present context.

Errata
We make every effort to ensure that there are no errors in the text or in the code. However, no one is
perfect, and mistakes do occur. If you find an error in one of our books, like a spelling mistake or faulty
piece of code, we would be very grateful for your feedback. By sending in errata you may save another
reader hours of frustration and at the same time you will be helping us provide even higher quality
information.

To find the errata page for this book, go to http://www.wrox.com and locate the title using the Search
box or one of the title lists. Then, on the book details page, click the Book Errata link. On this page you
can view all errata that has been submitted for this book and posted by Wrox editors. A complete book
list including links to each book’s errata is also available at www.wrox.com/misc-pages/booklist
.shtml.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/techsupport
.shtml and complete the form there to send us the error you have found. We’ll check the information
and, if appropriate, post a message to the book’s errata page and fix the problem in subsequent editions
of the book.

p2p.wrox.com
For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a Web-based
system for you to post messages relating to Wrox books and related technologies and interact with other
readers and technology users. The forums offer a subscription feature to e-mail you topics of interest of
your choosing when new posts are made to the forums. Wrox authors, editors, other industry experts,
and your fellow readers are present on these forums.

flast.indd xxviiflast.indd xxvii 12/17/07 4:08:24 PM12/17/07 4:08:24 PM

xxviii

Introduction

At http://p2p.wrox.com you will find a number of different forums that will help you not only
as you read this book, but also as you develop your own applications. To join the forums, just follow
these steps:

1. Go to p2p.wrox.com and click the Register link.

2. Read the terms of use and click Agree.

3. Complete the required information to join as well as any optional information you wish to
provide and click Submit.

4. You will receive an e-mail with information describing how to verify your account and complete
the joining process.

You can read messages in the forums without joining P2P but in order to post your own messages, you
must join.

Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the Web. If you would like to have new messages from a particular forum
e-mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works as well as many common questions specific to P2P and
Wrox books. To read the FAQs, click the FAQ link on any P2P page.

flast.indd xxviiiflast.indd xxviii 12/17/07 4:08:24 PM12/17/07 4:08:24 PM

Part I

PowerShell for
Exchange

Fundamentals

Chapter 1: Getting Started with Windows PowerShell

Chapter 2: Using Exchange Management Shell

Chapter 3: Using PowerShell to Deploy Exchange Server 2007

Chapter 4: Working with User and Group Objects

Chapter 5: Public Folders

c01.indd 1c01.indd 1 12/17/07 3:19:21 PM12/17/07 3:19:21 PM

c01.indd 2c01.indd 2 12/17/07 3:19:23 PM12/17/07 3:19:23 PM

 Getting Started with
Windows PowerShell

 Windows PowerShell is the next - generation command - line shell and scripting language for
Windows. Exchange Server 2007 is the first Microsoft application to utilize Windows PowerShell
for deployment and administration. This chapter introduces Windows PowerShell and explains
the basic concepts you ’ ll need to know to use Windows PowerShell effectively.

 The first section, “ What Is Windows PowerShell? ” includes command shell history and describes
the features that make Windows PowerShell the ideal management platform for Exchange
Server 2007.

 The section that follows, “ Windows PowerShell Basics, ” covers the fundamentals of Windows
PowerShell. This section describes the components of Windows PowerShell and how to find
commands and then learn how to use them.

 To understand Windows PowerShell and its benefit to Exchange administrators, this chapter
covers the following key areas:

 Command shells vs. Graphical User Interfaces

 Windows PowerShell components

 Windows PowerShell built - in help

 Composing commands using pipelines

 What Is Windows PowerShell?
 Windows PowerShell is a new command - line shell and scripting language for Windows. It was
designed by Microsoft specifically to give administrators an extensible command shell for
managing Windows environments with greater control and flexibility. This section includes a brief
discussion of some traditional administrative interfaces to help you understand why there is a

❑

❑

❑

❑

c01.indd 3c01.indd 3 12/17/07 3:19:23 PM12/17/07 3:19:23 PM

Part I: PowerShell for Exchange Fundamentals

4

need for an advanced interface like Windows PowerShell. What follows is a discussion of the main
features that set Windows PowerShell apart from other management interfaces and make it the most
powerful administrative interface that Microsoft has ever produced.

 Shell History
 Before there was the Graphical User Interface (GUI), there was the Command Line Interface (CLI). The
CLI was born of a need to quickly interact with the operating system at a time when computers were
mostly controlled using punch card or paper tape input. The first CLIs used teletype machines to enter
commands directly into the computer for execution, with the results returned to the operator as printed
output. Teletypes were later replaced with dedicated text - based CRT terminals that offered an even
greater advantage in speed and the amount of information available to the operator.

 All CLIs rely on a program that interprets textual commands entered on the command line and turns
them into machine instructions. This program is known as a command - line interpreter or shell. Every
major operating system includes some sort of shell interface. UNIX administrators may be familiar with
several shells (SH, KSH, CSH, and BASH) as well as the text processing languages AWK and PERL.
Windows users may also be familiar with cmd.exe , the Windows command - line interpreter and the
Windows Script Host for running scripts.

 All these shells make possible direct communication between the operating system and the user.
They include built - in commands and provide an environment for running text - based applications
and utilities.

 When Shells Are Better than GUI Interfaces
 GUI interfaces came later in computer development and opened the door to less-technically-advanced
users looking for a more “ comfortable ” way to interact with the operating system. Although they
provide a simple - to - use interface, GUI applications are prone to user error because their use requires
direct interaction between the user and the interface through menus, controls, and fields. For each
administrator in the organization to complete the same tasks as all other administrators, they must
learn and then use the correct menu choices and controls in order to get consistent results.

 GUI - based management programs also constrain administrators to predetermined properties and
controls. They lack provisions for special or one - off tasks because they are designed and written with
specific functionality that is appropriate for general purposes.

 Shells offer a powerful solution for overcoming these GUI shortcomings by providing a method to
gather commands into a batch file, also known as a script, and then run them as if they had been entered
one at a time at the command line. Administrators create and run scripts to automate everyday tasks and
resolve difficult issues GUI interfaces are not designed to handle. Scripts allow a reliable, sustainable
method for administering an environment.

 Once a script has been written and proven to work for its intended purpose, it can be distributed
throughout an organization and used as needed by any administrator, with expected and consistent
results. Examples of some common script solutions you might find in most organizations are used for
unattended machine deployments, user account provisioning, and nightly database backups.

c01.indd 4c01.indd 4 12/17/07 3:19:23 PM12/17/07 3:19:23 PM

Chapter 1: Getting Started with Windows PowerShell

5

 Common Shell Limitations
 The traditional shells mentioned earlier offer an administrator greater control and flexibility for tackling
everyday or even unusual management tasks, but they all suffer from significant drawbacks.

 Command shells operate by executing built - in commands that run within the process of the shell, or
by executing a command or application in a new process outside of the shell. Many applications lack
command - line equivalents for controls found in their GUI management programs. And the number
of built - in commands offered by most shells is usually small, requiring more applications and utilities
to run outside the shell to accomplish critical tasks. Most organizations lack the resources to develop
special applications and utilities on their own and may struggle to accomplish more complex tasks using
available commands alone.

 Another drawback shared by most shells is the way in which they handle information. The results of
running a command or utility is returned as text to the command line. If you need to use this text as
input for another command, which is common in scripting, it has to be parsed. Parsing is the process of
evaluating text and extracting the meaningful values in a form that can then be properly interpreted by
another command. Parsing is prone to error and can be time consuming because the format required for
preparing the textual input can vary greatly between different commands, applications, and utilities.

 One final limitation to consider is the lack of integration between a shell and the scripting languages you
would use in that shell. For example, Windows Script Host provides a method for implementing a
variety of scripting languages from the command line (via cmd.exe), but it is not integrated with
cmd.exe and is thus not interactive. It also lacks readily accessible documentation from the command
line as you would find in many other shells and scripting environments.

 The Power Behind PowerShell
 What sets Windows PowerShell apart from all other command shells is that it is built on top of .NET
Framework version 2.0. Windows PowerShell exposes .NET classes as built - in commands. When these
commands are executed they create a collection of one or more structured objects as output. Instead of
text, all actions in Windows PowerShell are based on .NET objects.

 Windows PowerShell objects have a specific type based on the class used to create them. They have
properties (which are characteristics) and methods (which are actions you can take). Because objects
have a defined structure, a collection of objects created by one command can be passed to another
command as input without the need for parsing the data in - between.

 Windows PowerShell includes a fully integrated and intuitive scripting language for managing .NET
objects. The language is consistent with higher - level languages used in programming .NET. Those
administrators familiar with the C# programming language will find many similarities in the grammar,
syntax, and keywords used by the Windows PowerShell scripting language.

 Windows PowerShell includes more than 130 built - in commands for performing the most common
system administrative tasks. The commands are designed to be easy to understand and use because they
share common naming and parameter conventions. Learning how to use one command makes it easy to
understand how similar commands are also used.

c01.indd 5c01.indd 5 12/17/07 3:19:24 PM12/17/07 3:19:24 PM

Part I: PowerShell for Exchange Fundamentals

6

 Because Windows PowerShell is fully extensible, software developers can create their own custom
built - in commands to handle those administrative tasks not already addressed in the default built - in
command set. Exchange Management Shell is an example of Windows PowerShell extended to include
more than 500 built - in commands.

 Windows PowerShell not only allows access to the local disk drives as a file system, but it also exposes
the local Registry, certificate store, and system environment variables and allows you to navigate them
using the same familiar methods you would use for navigating a file system. Windows PowerShell also
provides additional data stores for variables, functions, and alias definitions used inside the shell.

 GUI management applications can be built on top of Windows PowerShell. Software developers can
ensure that all administrative functions found in a GUI management application built on Windows
PowerShell have a corresponding scriptable equivalent in the Windows PowerShell CLI. Exchange
Management Console is an example of a GUI management application built on top of Windows
PowerShell.

 PowerShell Basics
 You may be asking yourself why a book about Exchange Management Shell is spending so much time in
the beginning talking about Windows PowerShell. Because Exchange Management Shell is built on top
of Windows PowerShell, you need to understand the basic concepts and components of Windows
PowerShell first.

 The Command - Line Interface
 Windows PowerShell operates within a hosting application. The default application is powershell.exe ,
a console application that presents a command line to the user. To start PowerShell from the Start menu
select All Programs Windows PowerShell 1.0 Windows PowerShell. This opens Windows
PowerShell with the default console application as shown in Figure 1 - 1 .

 Many first - time users of Exchange Management Shell may be confused when after opening the default
Windows PowerShell console application that they are unable to run any Exchange - specific commands.
This is because Exchange Management Shell is an extension of Windows PowerShell. The default
Windows PowerShell hosting application does not include any Exchange - specific commands. Windows
PowerShell is extended by the use of a component called a snap - in. A snap - in provides a method for
loading custom PowerShell commands and functionality contained in an application extension file.

 To start Exchange Management Shell from the Start menu, select All Programs Exchange Server 2007
 Exchange Management Shell. The target definition for this program shortcut contains the following

underlying command line:

C:\WINDOWS\system32\WindowsPowerShell\v1.0\PowerShell.exe -PSConsoleFile
”C:\Program Files\Microsoft\Exchange Server\bin\exshell.psc1” -noexit -command “.
’C:\Program Files\Microsoft\Exchange Server\bin\Exchange.ps1 ’ ”

c01.indd 6c01.indd 6 12/17/07 3:19:24 PM12/17/07 3:19:24 PM

Chapter 1: Getting Started with Windows PowerShell

7

 While invoking Windows PowerShell, this command specifies a console definition file identified by
the PSConsoleFile parameter. The exshell.psc1 file contains a pointer to the Exchange
Management Shell snap - in definition stored in the Registry at HKEY_LOCAL_MACHINE\SOFTWARE\
Microsoft\PowerShell\1\PowerShellSnapIns\Microsoft.Exchange.Management
.PowerShell.Admin .

 The ModuleName value stored in this location contains the path to the application extension
file Microsoft.Exchange.PowerShell.Configuration.dll , located in the %ProgramFiles%\
Microsoft\Exchange Server\Bin directory. Windows PowerShell loads this .dll file to make the
Exchange commands available.

 In addition to loading the snap - in for Exchange Management Shell, the underlying command also uses
the command parameter to specify additional commands to run at startup, in this case the script file
 Exchange.ps1 . This script file contains definitions for aliases, functions, and variables specific to

Figure 1-1

c01.indd 7c01.indd 7 12/17/07 3:19:24 PM12/17/07 3:19:24 PM

Part I: PowerShell for Exchange Fundamentals

8

Exchange management. It also defines the appearance of the command - line prompt and the initial
welcome banner shown in Figure 1 - 2 .

 As you can see, the appearance of the Exchange Management Shell is a bit different from the default
Windows PowerShell console application, yet all the functionality of the core shell remains intact.
Because Windows PowerShell is hosted in a console application, all the familiar properties and controls
for a console application are available. Later in this section you learn how to set up your Exchange
Management Shell for the best user experience when following the examples in this book.

Figure 1-2

 Cmdlets
 The most basic component of Windows PowerShell is the built - in commands, called cmdlets
(pronounced command - lets). Almost all the work done through Windows PowerShell is done through
the use of cmdlets. Cmdlets are similar to built - in commands found in other shells; for example, the
built - in command DIR found in cmd.exe . In Exchange Management Shell, cmdlets that perform a
specific administrative function are often referred to as tasks.

 All cmdlets share the same basic structure. They have a name and take one or more parameters as input.
Entering the name of a cmdlet, followed by any necessary parameter names and values, will result in the

c01.indd 8c01.indd 8 12/17/07 3:19:25 PM12/17/07 3:19:25 PM

Chapter 1: Getting Started with Windows PowerShell

9

 Windows PowerShell commands are case - insensitive. The examples given in this section use the default
form of capitalizing the first letter of each distinct word in the command elements. Only spelling and
syntax count when entering Windows PowerShell commands.

 Cmdlet Names: The Verb - Noun Pair
 Cmdlet names always take the form of two or more words, separated by a dash or hyphen (-).
The first word is known as the verb and refers to an action the cmdlet will take. The second word or
group of words is known as the noun, and refers to the target of the verb. The verb and noun describe
the action and the target of the action. Using this convention for naming cmdlets makes discovering and
learning cmdlets more intuitive.

 Cmdlet nouns may contain multiple words but have no spaces between them.

 Common Verb Names
 Microsoft has produced a list of common verb names recommended for use by software programmers
developing Windows PowerShell cmdlets. This helps maintain a well - known list of verb names an
administrator needs to know when learning about cmdlets. Here are some common verb names used in
Exchange Management Shell cmdlets and what they do:

 Get : The Get verb retrieves information about the target of the cmdlet. In the previous example,
 Get-ExchangeServer , the cmdlet retrieved information about Exchange servers.

 Set : The Set verb sets a condition or makes a configuration change to the cmdlet target.

 New : The New verb creates a new instance of the cmdlet target.

 Remove : The Remove verb deletes the cmdlet target.

❑

❑

❑

❑

Figure 1-3

execution of the cmdlet. For example, the cmdlet Get-ExchangeServer returns a list of all Exchange
servers in the organization in a formatted list as shown in Figure 1 - 3 .

c01.indd 9c01.indd 9 12/17/07 3:19:25 PM12/17/07 3:19:25 PM

Part I: PowerShell for Exchange Fundamentals

10

 The Get verb is the most common verb used in Exchange Management Shell cmdlets. It is also known
as the default verb. When a cmdlet noun name is entered without a verb, Windows PowerShell assumes
that the Get verb was implied and runs that cmdlet. In the preceding example, entering
 ExchangeServer instead of Get-ExchangeServer would yield the same results.

 Noun Names
 Nouns always represent the target of the cmdlet, in other words the thing on which the cmdlet will act.
Noun names are usually straightforward and simply describe the target item. For example, consider the
cmdlet Get-ClusteredMailboxServerStatus . From looking at this cmdlet ’ s name you should be able
to figure out that its purpose is to retrieve the status of Clustered Mailbox Servers. When you apply this
logic to other cmdlet names you quickly begin to understand how easy it can be to discover and
learn cmdlets.

 Another concept of noun names you should understand is that many cmdlet names share the same
noun. For example, there are 10 different cmdlets that all affect mailbox items. Here are examples of just
a few of these cmdlets:

 Get-Mailbox is used to retrieve information about one or more mailbox - enabled users.

 Set-Mailbox is used to change configuration settings for one or more mailbox - enabled users.

 New-Mailbox is used to create a new mailbox - enabled user.

 Move-Mailbox is used to move one or more mailboxes from one mailbox database to another.

 As you can see, these examples all use a common noun name, yet each cmdlet yields very different
results when it is coupled with a different verb name.

 Parameters
 Parameter names are preceded by a dash or hyphen (-) and can be made up of a single word or multiple
words with no spaces between them. Parameter names are typically followed by one or more values that
are used either to provide input data for setting property values or to dictate the behavior of the cmdlet.
Parameters that dictate behavior act as switches and typically do not require an input value.

 Parameters have certain characteristics that determine how they are used. You can find out these
characteristics via the built - in help information for each cmdlet that is readily available from the
command line. Later this section covers how to get help and how to interpret that information to
know how to use parameters effectively.

 Parameter Input Values
 Parameter input values are typically integer (numbers), string (words), or Boolean (true or false) data
types. Other more specialized data types are also possible as defined by the class the cmdlet represents.
For example, many cmdlets specific to Exchange Management Shell have data type input values specific
to Exchange configuration components. The parameter data type is set when the cmdlet is defined.
Windows PowerShell validates parameter input values as the cmdlet executes. If an invalid value is used
or the format of the input data does not meet the cmdlet ’ s specification, the cmdlet fails to execute. For
example, if a parameter takes as input an integer value, but a string value is entered instead, the cmdlet
fails with an error that states the wrong data type was used.

❑

❑

❑

❑

c01.indd 10c01.indd 10 12/17/07 3:19:25 PM12/17/07 3:19:25 PM

Chapter 1: Getting Started with Windows PowerShell

11

 In Figure 1 - 4 , the Set-Mailbox cmdlet is being used to set the ProhibitSendQuota attribute on
mailbox - enabled user John Doe. The expected data input type for parameter ProhibitSendQuota
is an integer value or integer value with a standard byte size abbreviation as a suffix. Because an
alphanumeric string value (somestring) was entered instead, the command fails to execute and the
error message shown describes the exact cause for the error. The solution is to provide the input value in
the correct format, in this case 2GB to specify a ProhibitSendQuota value of 2,147,483,648 bytes.

Figure 1-4

 Single - word string values can be entered as is, but string values that contain multiple words with spaces
must be encapsulated in single or double quotes. Some parameters take as input multiple values. Each
value must be separated by commas. When entering multiple string values with spaces, encapsulate
each value in quotes, and separate each value with commas.

 In Figure 1 - 5 , the Set-User cmdlet is being used to set the multi - valued attribute OtherHomePhone with
two separate string values that both contain spaces.

Figure 1-5

 Some parameters support wildcards as input. Windows PowerShell handles wildcard matching so all
cmdlets that accept wildcard input behave the same way. The most commonly known wildcard you will
find useful is the asterisk or star (*). The asterisk wildcard can be used to stand for zero or more
characters in a string.

c01.indd 11c01.indd 11 12/17/07 3:19:26 PM12/17/07 3:19:26 PM

Part I: PowerShell for Exchange Fundamentals

12

 For example, the Get-Service cmdlet is used to gather information about services and supports
wildcards for the Name parameter used to identify those services. Using the asterisk wildcard you can
generate a list of all services with names that match the given pattern, as shown in Figure 1 - 6 for services
that begin with Net .

Figure 1-6

 Most cmdlets that use the Identity parameter support wildcards as input. Also most cmdlets that use
the Get verb and the Identity parameter support a default value of * for the Identity parameter.
This means that when you enter the cmdlet name without any parameters or values, it is implied you
want to gather information about all the possible matches.

 For example, typing and entering Get-Mailbox returns information about all mailbox - enabled accounts.
In large organizations this could result in thousands of matches so cmdlets like Get-Mailbox limit the
results to 1,000 matches. This can be increased by including the ResultSize parameter with an
appropriate higher value.

 In Figure 1 - 7 , Get-Mailbox is used to retrieve all mailboxes in the organization.

Figure 1-7

c01.indd 12c01.indd 12 12/17/07 3:19:26 PM12/17/07 3:19:26 PM

Chapter 1: Getting Started with Windows PowerShell

13

 Optional and Required Parameters
 Cmdlets may have some parameters that are not required to be used each time the cmdlet is run and are
considered optional. You will find that most cmdlets have at least some optional parameters, especially
cmdlets that modify items, because not all properties of an item require changing at the same time. This
allows you to use only the optional parameters necessary to make the desired changes while leaving out
all other optional parameters.

 Then there are other parameters that must always be used when the cmdlet is run. You will find that
most cmdlets that take an action such as creating, modifying, or removing items have at minimum one
required parameter to identify the items on which to take action. If any required parameters are left out
when running a cmdlet, Windows PowerShell prompts the user to enter an input value for each of the
missing required parameters.

 The Identity parameter is one of the most common required parameters, typically used by cmdlets
that need as input the name of the object on which to take some action. For example, the Set-User
cmdlet modifies attributes on an existing user account in the Active Directory directory service.
The Identity parameter is required when using Set-User and is used to identify the user account
on which the changes are to be made.

 In Figure 1 - 8 , the Set-User cmdlet is being used to set the Department attribute, but the Identity
parameter was not used to name the target user so the shell prompts the operator for the missing value.

Figure 1-8

 Positional and Named Parameters
 Another parameter characteristic to consider is whether a parameter is positional or named. A positional
parameter can be used without actually entering the parameter name, as long as the input value is in the
position where the parameter name would normally have been used. Positional parameters are
designated with a number, starting with position 1, then position 2, and so on. Using positional
parameters effectively can be a real time - saving practice.

c01.indd 13c01.indd 13 12/17/07 3:19:26 PM12/17/07 3:19:26 PM

Part I: PowerShell for Exchange Fundamentals

14

 For example, the Identity parameter is typically a positional parameter used in position 1 after the
cmdlet name. The Get-Mailbox cmdlet uses the Identity parameter in position 1 to identify the
mailbox - enabled user for which to retrieve information. In Figure 1 - 9 , you can see that the results of
running the Get-Mailbox cmdlet with and without the Identity parameter name are identical as long
as the input value is supplied in the first position after the cmdlet name.

Figure 1-9

 If a parameter is not positional, then it is named. To use a named parameter you must always enter the
parameter name followed by the input value. The order in which you enter named parameters and their
input value on the command line does not matter because the shell ’ s command parser interprets the
command in total before execution.

 Parameter Shortcuts
 Another time - saving feature you may find useful is parameter name shortcuts. When entering the name
of a parameter, you need to supply only enough of a parameter ’ s name to disambiguate it from any
other parameter name. In the following example the first command uses the Set-User cmdlet to set the
 Manager attribute on user account John Doe to his manager Jane Doe . -ma is enough information for
the shell to interpret the parameter name Manager so the command succeeds. In the second command,
-po is being used to refer to the PostalCode parameter. However, -po is ambiguous and also matches
parameter PostOfficeBox . In this case the command fails with the error shown Figure 1 - 10 .

Figure 1-10

c01.indd 14c01.indd 14 12/17/07 3:19:26 PM12/17/07 3:19:26 PM

Chapter 1: Getting Started with Windows PowerShell

15

 The solution is to provide enough of the parameter name to make it unique, in this case posta would be
enough to disambiguate PostalCode from PostOfficeBox .

 Discovering Commands and Getting Help
 Now that you have learned the basic concept of using cmdlets, we ’ ll discuss how to go about
discovering cmdlets and learning how to use them.

 Even with more than 500 cmdlets in Exchange Management Shell, finding the right cmdlet to accomplish
a task is easier than you might think. Earlier in this section you learned that a cmdlet ’ s name is typically
descriptive of the cmdlet ’ s purpose. Using this knowledge along with some simple commands, you can
quickly and easily find any cmdlet.

 Using Get - Help to Find Cmdlets
 Windows PowerShell provides powerful built - in help information available directly from the command
line. Most cmdlets have some level of help content stored in a cmdlet help file that can be accessed from
the command line using the Get-Help cmdlet. You don ’ t need to know where the help file is or how to
get to help information for a specific cmdlet; PowerShell works out these details as part of built - in help.

 Besides displaying cmdlet help information, Get-Help is a powerful tool for finding cmdlets based
on ambiguous name matching. When supplied with a specific and unique cmdlet name as input to the
Name parameter, Get-Help displays the help information for that cmdlet. But if the input is ambiguous,
 Get-Help displays a list of all cmdlets that are a close match.

 Using this approach you simply need to supply enough of the possible cmdlet name to generate a list
of cmdlets from which to choose. For example, say you would like to learn about cmdlets that are used
for managing Exchange databases but you don ’ t know the exact names, or even which cmdlets might
be available. The command shown in Figure 1 - 11 generates a list of cmdlets that contain the word
 database .

Figure 1-11

c01.indd 15c01.indd 15 12/17/07 3:19:27 PM12/17/07 3:19:27 PM

Part I: PowerShell for Exchange Fundamentals

16

 In this example for Get-Help and for those that follow later in this section, input values are used
without specifying the parameter Name . Because Name is a positional parameter (for position 1),
it is not required to be named as long as the input value appears on the command line in the first
position after Get-Help .

 Using the whole word database produces a list of cmdlets that have at least the word at the beginning
of the noun name. But can you be sure that this is a list of every cmdlet possible that can be used to
manage databases? Luckily, Get-Help supports the use of wildcards to search for matching cmdlet
names. To display a list of cmdlets that have the word database anywhere in the cmdlet name, add the
 * wildcard to the beginning and end of the name. This causes Windows PowerShell to return a list of all
possible matches as shown in Figure 1 - 12 .

Figure 1-12

 This produces a comprehensive list of all available cmdlets that deal with the management of Exchange
databases. Now you would simply need to select the most likely cmdlet for accomplishing a given task
based on how closely the cmdlet name describes what the cmdlet does, then access the help information
for that cmdlet to learn how it is used. For example, if you want to learn how to create a mailbox
database, the cmdlet New-MailboxDatabase is the most likely choice.

 Another simple way to use Get-Help is with the Role parameter. Exchange Server 2007 architecture
allows for the installation of different server roles on a given server to match the needs of an
organization ’ s messaging system. There are five server roles, and by specifying a wildcard role value
with the Role parameter, Get-Help displays a list of all cmdlets used to manage that role. For example,
to display all cmdlets used to manage the Mailbox server role, the command shown in Figure 1 - 13 would
be used.

c01.indd 16c01.indd 16 12/17/07 3:19:27 PM12/17/07 3:19:27 PM

Chapter 1: Getting Started with Windows PowerShell

17

 The other possible role values you can use with the Role parameter are:

 client for Client Access Server

 hub for Hub Transport server

 um for Unified Messaging server

 edge for Edge Transport server

 Using Get - Command to Find Cmdlets
 In addition to the Get-Help cmdlet, the Get-Command cmdlet is very useful for discovering cmdlets
and other Windows PowerShell command elements such as functions, aliases, applications, and
external scripts.

 Running Get-Command without any parameters produces a list of every available cmdlet. With more
than 500 available cmdlets in Exchange Management Shell, this extensive list is not very efficient for
discovering individual cmdlets. The parameters for Get-Command allow you to refine the list into
something comprehensive. Using the Name parameter you can supply enough of the cmdlet name with
wildcards to create a list of ambiguous matches similar to the previous example using Get-Help .

 The parameters Verb and Noun are used either alone or together to search for cmdlets with matching
verb and noun names. Wildcards are permitted for both of these parameters. The Name parameter

❑

❑

❑

❑

Figure 1-13

c01.indd 17c01.indd 17 12/17/07 3:19:27 PM12/17/07 3:19:27 PM

Part I: PowerShell for Exchange Fundamentals

18

cannot be used in conjunction with either the Verb or Noun parameters. In Figure 1 - 14 , Get-Command
is used with the Verb and Noun parameters to return a list of matching cmdlets.

 The CommandType parameter allows you to specify the type of command for which to return matches.
Possible values are Alias , Function , Cmdlet , ExternalScript , Application , and All . Using
 Get-Command in this way allows you to find these additional command elements that are not exposed
when searching for cmdlets using Get-Help . For example, the command in Figure 1 - 15 uses the
CommandType parameter to find external scripts that contain the word database somewhere in
their name.

Figure 1-14

Figure 1-15

 ExternalScript command elements are Windows PowerShell scripts located in the %ProgramFiles%\
Microsoft\Exchange Server\Scripts directory. In this example two scripts included with Exchange
Server 2007 match the search criteria for names that include database .

c01.indd 18c01.indd 18 12/17/07 3:19:28 PM12/17/07 3:19:28 PM

Chapter 1: Getting Started with Windows PowerShell

19

 Get-Command can also be used to return detailed information about the syntax of a given cmdlet using
the Syntax parameter. However, you may find the syntax information exposed in a cmdlet ’ s help
information to be more useful in the long run because it is accompanied by other help details.

 Using Help Information Effectively
 Cmdlet help information is very detailed and you may find it difficult to follow when you first start
learning about a given cmdlet. Luckily Get-Help makes it possible to access specific areas of help
information in varying degrees of detail. Using Get-Help effectively allows you to access the
information you are interested in without displaying the entire help information available for a cmdlet.

 There are three versions of Get-Help that display help information differently depending on how they
are used:

 Get-Help displays help information without pausing when the console display is full.
 Parameters are used with Get-Help to determine the type of information and detail level
 displayed. The basic syntax is Get-Help < cmdlet name > < parameters > .

 Help is a function based on Get-Help that displays help information one screenful at a time,
pausing when the console screen is full to allow the operator to advance the display either one
full page using the space bar, or one line using the Enter key. The parameters available for
Get-Help also work with Help . The basic syntax is Help < cmdlet name > < parameters > .

 -? is a pseudo - parameter that displays basic help information without pausing when the
 console display is full. -? takes no parameters as input like the other versions of Get-Help .
The basic syntax is < cmdlet name > -? .

 The information contained in cmdlet help files you will find most interesting is divided into six major
topics. By using certain parameters with Get-Help , you can display each of these topics in varying
degrees of detail:

 Synopsis: A brief description of the cmdlet and what it does.

 Syntax: One or more syntax diagrams that detail the use of the cmdlet and its input parameters.

 Detailed Description: A more detailed description than the synopsis.

 Parameters: A detailed description of each parameter and how they are used.

 Examples: One or more examples of how the cmdlet is executed.

 Related Links: The names of other cmdlets that may be related in some way to this cmdlet.

 The command Get-Help < cmdlet name > without any parameters displays the Synopsis, Syntax,
Detailed Description, and Related Links topics. This is the same information displayed when using the
command < cmdlet name > -? .

 The command Get-Help < cmdlet name > -Detailed displays additional information about the
cmdlet including descriptions of each parameter (but not details) along with the Examples topic.

❑

❑

❑

❑

❑

❑

❑

❑

❑

c01.indd 19c01.indd 19 12/17/07 3:19:28 PM12/17/07 3:19:28 PM

Part I: PowerShell for Exchange Fundamentals

20

 The command Get-Help < cmdlet name > -Full displays the entire contents of the help file for the
cmdlet including detailed information about each parameter.

 The command Get-Help < cmdlet name > -Examples displays the Examples topic along with the
Synopsis topic.

 The command Get-Help < cmdlet name > -Parameter < parameter name > displays the detailed
information about the specified parameter. Wildcards are permitted.

 Although the descriptions and examples included in the help files are useful, you may find that the most
beneficial information for learning how to use a cmdlet are the details contained in the Syntax and
Parameter topics.

 Syntax Details
 The information included in the Syntax topic contains one or more syntax diagrams showing how the
cmdlet and its parameters are used. Some cmdlets can have more than one syntax diagram depending
on how the parameters work in combination with each other.

 For example, the Get-PublicFolderDatabase cmdlet has three distinct syntax diagrams in its help file.
Each diagram shows a different way to run the cmdlet depending on the parameters being used:

Get-PublicFolderDatabase [-Identity < DatabaseIdParameter >] [-DomainControll
er < Fqdn >] [-IncludePreExchange2007 < SwitchParameter >] [-Status < SwitchPara
meter >] [< CommonParameters >]

Get-PublicFolderDatabase -Server < ServerIdParameter > [-DomainController < Fq
dn >] [-IncludePreExchange2007 < SwitchParameter >] [-Status < SwitchParameter >
] [< CommonParameters >]

Get-PublicFolderDatabase -StorageGroup < StorageGroupIdParameter > [-DomainCo
ntroller < Fqdn >] [-IncludePreExchange2007 < SwitchParameter >] [-Status < Swit
chParameter >] [< CommonParameters >]

 The Get-PublicFolderDatabase can be used with the Identity parameter to identify a
specific database, the Server parameter to specify the server where the database is located, and the
StorageGroup parameter to specify the storage group that holds the database. Each of these parameters
is exclusive and cannot be used in combination with one another, therefore the separate syntax diagrams
are necessary to show how each is used.

 Parameter Details
 Two levels of parameter details can be displayed using Get-Help . The Detailed parameter causes the
output to include the name and description of each parameter, but omits technical details. The Full
parameter results in the display of all parameter details. To display the full details of a single given
parameter, the Parameter parameter is used followed by the name of the parameter. The Detail , Full ,
and Parameter parameters cannot be used in conjunction with one another.

c01.indd 20c01.indd 20 12/17/07 3:19:29 PM12/17/07 3:19:29 PM

Chapter 1: Getting Started with Windows PowerShell

21

 Parameter details describe whether the parameter is required or optional and if it is positional or named.
They also describe whether the parameter has a default value and if it accepts pipeline input and
wildcard characters. For example, the parameter details for the Identity parameter as used with the
 SetMailbox cmdlet contain the information displayed in Figure 1 - 16 using Get-Help and the
 Parameter parameter.

 As you can see in these details, the Identity parameter is required (true) and positional
(for position 1), has no default value, and accepts pipeline input (true) but not wildcard
characters (false).

 Learning More
 In addition to help information for individual cmdlets, there are several supplementary help files that
cover conceptual topics related to using Windows PowerShell. The names of the individual help files by
and large describe the topic they cover and are prefixed with the string about_ . To see a complete list of
available topics simply type the command shown in Figure 1 - 17 .

 To access the contents of one of these help files simply enter Get-Help about_ < topic name > . For
example, to read the help file that covers the usage of wildcards in Windows PowerShell, type Get-Help
about_wildcard .

 Using Tab Expansion to Enter Cmdlets and Parameters
 At this point you may be asking yourself how you will ever be able to remember exact cmdlet names
and type them in without making spelling mistakes. Fortunately that is not a problem once you
understand how to use the tab expansion feature of Windows PowerShell.

Figure 1-16

c01.indd 21c01.indd 21 12/17/07 3:19:29 PM12/17/07 3:19:29 PM

Part I: PowerShell for Exchange Fundamentals

22

 Most shells offer some form of automatic completion to take some of the drudgery and guesswork out of
entering certain command elements. Even cmd.exe offers automatic completion using the tab key when
typing directory paths and filenames. Windows PowerShell takes this feature to whole new levels of
functionality by providing tab expansion of cmdlet and parameter names as well.

 To use tab expansion when typing a cmdlet name, simply type the verb name followed by the hyphen,
then the first few letters of the noun name. When you press the Tab key, Windows PowerShell
automatically expands what you entered to the first matching cmdlet name. If there are other possible
matches, pressing the Tab key repeatedly cycles through the available choices. Pressing the Tab key
while holding down the Shift key causes Windows PowerShell to cycle backwards through the available
choices. The more characters you enter before pressing the Tab key make the search more specific and
narrows the number of possible matches.

 For example, say you need to run the cmdlet Get-MailboxFolderStatistics . This cmdlet is useful
for determining the size and number of items in given mailbox folders. Using tab expansion you can
enter this long cmdlet name with no mistakes and a minimal number of keystrokes using the following
procedure:

 1. Type get-ma and press the Tab key. This expands to Get-Mailbox . Notice the name
 automatically changes to the standard form of uppercase first letters.

 2. Now press the Tab key a second time. This time the cmdlet name expands to
 Get-MailboxCalendarSettings .

 3. Press the Tab key again and the name expands to Get-MailboxDatabase .

 4. Press the Tab key one last time to expand the name to Get-MailboxFolderStatistics .
To continue at this point simply hit the space bar and continue typing the rest of the command.

Figure 1-17

c01.indd 22c01.indd 22 12/17/07 3:19:29 PM12/17/07 3:19:29 PM

Chapter 1: Getting Started with Windows PowerShell

23

 Using this procedure you can enter complex, mistake - free cmdlet names using a minimal number of
characters and Tab keystrokes. One major benefit of tab expansion is you don ’ t have to remember exact
cmdlet names as long as you can enter at least the verb name followed by a few letters of the noun name.

 Tab expansion works for parameter names in the same manner. This works especially well when you
don ’ t know all the possible parameter names a cmdlet is using. To cycle through all the parameter names
type a hyphen and press the Tab key repeatedly. When the correct parameter name appears, continue
typing to enter the parameter value as applicable.

 Be careful when using this procedure because Windows PowerShell does not validate the parameter
names entered on the command line until the command is parsed at run time. Using tab expansion it is
possible to inadvertently enter the same parameter name twice, causing the command to fail.

 Using Cmdlet Aliases
 Windows PowerShell allows you to refer to cmdlets using a shorter, simpler name called an alias. The
default installation of Windows PowerShell comes complete with several predefined alias names that
approximate a similar function in other command shells.

 You may have already noticed that Windows PowerShell accepts dir as a command to display items in
the current location. There is no real cmdlet called dir , instead it is an alias for the underlying Windows
PowerShell cmdlet Get-ChildItem . Several other familiar command names have been defined as alias
names for the matching Windows PowerShell command. To see a list of all alias definitions, run
 Get-Alias .

 Windows PowerShell also allows you to define your own alias definitions using the New-Alias cmdlet.
The lifetime of alias definitions is linked to the lifetime of the current shell session. When the shell closes
the definition is lost. To learn more about aliases, type Get-Help about_Alias .

 Using Pipelines
 As mentioned earlier in this chapter, the results of running a Windows PowerShell cmdlet is a collection
of one or more .NET objects. These objects have a structure that describes the properties (attributes) of
the objects and the states (current value) of these properties. This feature of Windows PowerShell makes
it possible to take the results of one cmdlet and pass it via pipeline as input to another cmdlet for further
processing. Using a pipeline to pass data from one cmdlet to another is known as composition .

 The vertical pipeline operator (|) is used to instruct Windows PowerShell to pass the collected objects
from the command just prior to the pipeline to the next command. Commands can be constructed using
multiple pipelines to accomplish tasks too complex for a single cmdlet to accomplish alone.

 Some cmdlets that use the Get verb provide a way to limit the collection of objects based on a parameter
value that acts as a filter. The resulting collection can then be passed by pipeline to a cmdlet that uses the
 Set verb to modify one or more properties on each object. For example, the Get-User cmdlet includes
the OrganizationalUnit parameter.

 Say your organization has implemented Organizational Units as a way to contain all users located in
the same geographical office. A need arises to change the fax number attribute for all user accounts in the
same office. Using the Get-User cmdlet with the appropriate value for the OrganizationalUnit
parameter you can create a collection of user objects limited to the users in the office. By passing this

c01.indd 23c01.indd 23 12/17/07 3:19:29 PM12/17/07 3:19:29 PM

Part I: PowerShell for Exchange Fundamentals

24

collection to the Set-User cmdlet along with the appropriate value for the Fax parameter you can
change the fax number quickly and easily on every user account using a single command line.

 Commands that use multiple cmdlets and pipelines on a single line are often referred to as “ one - liners. ”
The following one - line command demonstrates the previous example for changing the fax number for
all users contained in the “ Denver ” organizational unit:

[PS] C:\ > Get-User -OrganizationalUnit “CN=Denver,DC=exchangeexchange,DC=local” |
Set-User -Fax 555-1234

 Whether there are 10 or 10,000 users in the organizational unit really does not matter in this example.
By collecting the user objects based on their organizational unit container with the first cmdlet, we are
able to modify the fax number on all users in bulk with the second cmdlet without additional complex
programming.

 Filtering Objects
 Not all cmdlets may provide parameters for filtering objects like the one shown in the previous example.
And though some cmdlets may provide a few filtering parameters, they may not provide a parameter
for the specific property you may need to use as a filter condition. That ’ s when you need to become
familiar with the Where-Object filter cmdlet.

 Where-Object allows you to filter objects out of the command stream based on one or more test
conditions you specify in a script block. The test conditions are based on one or more of the objects ’
properties. Only the objects that meet the test conditions are passed on to the next command, while all
others are discarded. The most basic syntax of Where-Object is easy to learn:

 < command > | Where-Object { < test condition > } | < command >

 Where and “?” are both shorthand alias names for the Where-Object cmdlet.

 The test condition is an expression that resolves to either Boolean true or false. Only the objects that
resolve true when tested are passed down the pipeline to the next command. The syntax of the test
condition is made up of the following elements:

{ $_. < property name > < comparison operator > < value to test > < conjunction > $_. < property
name > < comparison operator > < value to test > ...}

 The first element $_ is a special variable (called an automatic variable) and is used to refer to objects
in the pipeline stream. Using a technique called dot notation a property name is appended to the
 $_ variable to refer to the specific object property to which the test applies. For example, $_.Identity
refers to an object ’ s Identity property.

 A comparison operator is used to set the condition of the test. Windows PowerShell supports a number
of named comparison operators. The most frequently used operators for comparing whole property
values are eq (equals), ne (not equals), lt (less than), and gt (greater than). The like and notlike
operators are used to compare string values using wildcard rules. To see a complete list of all comparison
operators type Get-Help about_Comparison_Operators at the command line.

c01.indd 24c01.indd 24 12/17/07 3:19:30 PM12/17/07 3:19:30 PM

Chapter 1: Getting Started with Windows PowerShell

25

 The value to test must be of the same data type of the property being tested. For example, if the property
data type is string, a string value enclosed in quotes must be used for the test. If the property data type is
integer, a numeric value must be used for the test and so on.

 While Windows PowerShell validates the syntax used inside the script block, the result of entering an
unknown property name or an invalid data type is a failure to pass any objects down the pipeline
without reporting any error to the operator.

 Multiple test conditions can be used in the same script block as long as they are separated by one or
more conjunctive or disjunctive operators:

 The and conjunction operator is used to compare the Boolean results of two or more test condi-
tions to render a concluding Boolean value. If any of the test conditions are true, a true is
returned.

 The or disjunctive operator is used to compare the Boolean results of only two test conditions. If
either one or both test conditions are false, a false is returned.

 Conjunctive and disjunctive groups of test conditions can be used in the same script block as
long as they are enclosed in parentheses.

 Now let ’ s look at a practical example of using Where-Object as a filter in the pipeline stream. Say that
you need to change the Manager property for several users based on the department to which they
belong (Engineering), and the office from which they work (the Dallas office) to show they report to
manager John Doe. The command would look like this:

[PS] C:\ > Get-User | Where-Object { $_.Office -eq “Dallas” -and $_.Department -eq
 “Engineering” } | Set-User -Manager “John Doe”

 After collecting all users with Get-User , the collection of objects is passed to Where-Object to apply
the test conditions on each object one at a time. The first test checks for the Office property equal to
 “Dallas” . The second condition checks the Department property equal to “Engineering” . If both test
conditions result in true, the object is passed to the next command. If one of the test conditions results in
false, the object is disposed. After processing all objects in the stream, they are passed to Set-User for
applying the modification.

 Finding Property Names and Data Types
 To use Where-Object effectively you need to know the available property names and data types for
the objects being passed by a given cmdlet. By passing the results of any cmdlet that uses the Get verb
to the Get-Member cmdlet you can generate a list of properties and their data type. For example,
the command in Figure 1 - 18 sends the objects collected by the Get-Mailbox cmdlet to Get-Member and
displays the objects ’ properties and their definition.

 It is important to know the exact name of each property used in the Where-Object script block.
Mistyping a property name results in a failure to pass any objects down the pipeline stream without
reporting any error to the operator.

❑

❑

❑

c01.indd 25c01.indd 25 12/17/07 3:19:30 PM12/17/07 3:19:30 PM

Part I: PowerShell for Exchange Fundamentals

26

 Controlling Output
 When you run a cmdlet in Windows PowerShell, the type of data displayed as output, if any, is
determined by the default format of the cmdlet. The output format is determined at the time the
cmdlet is created. Most cmdlets that use the Get verb have some form of default display formatting that
results in what the programmer determined the most useful information. For example, running the
Get-Mailbox cmdlet for a specific user results in the output shown in Figure 1 - 19 .

Figure 1-19

Figure 1-18

 At times you need to see more specific information not included in the default format. By using the
pipeline operator to pass objects to the Format-List and Format-Table cmdlets you can control a
cmdlet ’ s output to see either all properties or only those properties you specify.

c01.indd 26c01.indd 26 12/17/07 3:19:30 PM12/17/07 3:19:30 PM

Chapter 1: Getting Started with Windows PowerShell

27

 Format - List
 In the previous example Get-Mailbox displayed only those properties specified as default output for
the cmdlet. By passing the object to Format-List (or its alias name fl) without any additional
parameters, all properties are displayed in a list format as shown in Figure 1 - 20 .

 To display only specific properties, add the property names, separated by commas, after Format-List .
For example, if you only want to see the Name , Alias , and PrimarySMTPAddress properties for user
 jandoe , you would then run the command shown in Figure 1 - 21 .

Figure 1-20

Figure 1-21

c01.indd 27c01.indd 27 12/17/07 3:19:31 PM12/17/07 3:19:31 PM

Part I: PowerShell for Exchange Fundamentals

28

 Format - Table
 Format-Table (and its alias, ft) is similar to Format-List except it allows you to format output in
table format. Unlike Format-List , passing objects to Format-Table without any additional parameters
results in one of two displays. If the default format for displaying output is table format of select
properties, the default format is used for display. If the default format is a list of all properties, Windows
PowerShell attempts to display as many of the properties as possible in table format. This is usually very
impractical so Format-Table is typically used with a list of properties to display.

 If Format-Table is used in place of Format-List in the previous example, the resulting display would
look like Figure 1 - 22 .

Figure 1-22

 As more properties are specified, or if property values are longer than can be displayed on a single line,
Windows PowerShell truncates the output with ellipses to indicate more information is available as
shown in Figure 1 - 23 where the LegacyExchangeDN property has been added to the previous command.

Figure 1-23

c01.indd 28c01.indd 28 12/17/07 3:19:31 PM12/17/07 3:19:31 PM

Chapter 1: Getting Started with Windows PowerShell

29

 To change this behavior, add the AutoSize parameter to force Format-Table to change column widths
to make the most of the console screen width, and the Wrap parameter to wrap long values that won ’ t fit
on a single line to the next line. The addition of these two parameters to the previous example yields the
results shown in Figure 1 - 24 .

Figure 1-24

 Running Scripts
 As you learn to use Exchange Management Shell to manage your Exchange organization you will most
likely identify several command sequences that you run on a regular basis to accomplish some task.
Store these commands in a Windows PowerShell script file so you can run them all by simply executing
the script file. Use your favorite text editing software to create and edit script files. Windows PowerShell
script files use .ps1 as the file extension name.

 To run a script, type its name at the command line. You do not have to include the .ps1 file extension.
However, you do have to pay attention to the drive location where the script is stored and the current
location from which the script is being run. You must supply the full path to the script file even if the
script is stored in the current location. To tell Windows PowerShell the script is in the current directory,
either type the full path or use a dot and backslash (.\) to indicate the current directory as shown in this
example:

 [PS] C:\scripts > .\myscript

 Exchange Management Shell provides a default directory for storing several script files provided
with Exchange Server 2007. You do not have to provide the full path name when running any script
located in the %ProgramFiles%\Microsoft\Exchange Server\scripts directory because this path
is stored in the Windows system variable path statement as part of Exchange Server installation.
By placing your script files in this directory you can keep them in a known directory and run them from
any drive location without providing the full path.

 The chance that a script may include destructive code may raise security concerns among administrators.
Windows PowerShell provides a method for applying a security policy for controlling which scripts are
allowed to run on a machine. The execution policy determines whether or not scripts are allowed to run,
and whether they must include a digital signature that verifies the origin of the script and if it has been
tampered with in any way since it was digitally signed by its creator.

c01.indd 29c01.indd 29 12/17/07 3:19:31 PM12/17/07 3:19:31 PM

Part I: PowerShell for Exchange Fundamentals

30

 All scripts included with Exchange Server 2007 have been code signed by Microsoft to ensure the scripts
comply with the execution policy model for ensuring scripts can be accounted for before execution. The
default execution policy setting for Exchange Management Shell is RemoteSigned . This level allows you
to run scripts you create locally and warns you when scripts provided by Microsoft have been altered.

 To learn more about Windows PowerShell execution policies, type Get-Help about_signing .

 Preparing Exchange Management Shell
 Before continuing on to the rest of the book, take a moment to review the following procedure for
customizing your Exchange Management Shell console application. You ’ ll find these options convenient
when trying the examples shown in the following chapters.

 1. Navigate to the Exchange Management Shell shortcut: from the Start menu, select All
Programs Exchange Server 2007 and then right - click Exchange Management Shell and
select Properties.

 2. Select the Options tab and make the following modifications:

 a. To make it possible to select, copy, and paste text in the console screen, under Edit Options
click to select the QuickEdit Mode checkbox. With this option selected, you can select text
in the console window by dragging the left mouse button. Copy the selected text to the
clipboard using the right mouse button or by pressing Enter.

 b. The Insert Mode checkbox is typically already selected, but make sure it is checked as well.
This option allows you to paste text into the command line by positioning the cursor at the
desired position, then using the right mouse button to paste the contents of the clipboard.

 c. Under Command History set the Buffer Size to at least 100. This number determines the
number of commands stored in the console buffer. Previously entered commands can be
recalled by using the up and down cursor keys. Click to select the Discard Old Duplicate
checkbox to automatically discard any duplicate commands from the console buffer.

 3. Select the Layout tab and make the following modifications:

 a. Under Screen Buffer Size change the Height setting to 9,999. This setting determines the
number of lines of output held in the console buffer you can view using the console
window scroll control.

 b. Under Window Size, set the Width setting to a number between 80 and 120. This setting
determines the number of characters displayed across the console window. Though a
higher number setting allows you to type more characters before wrapping to the next
line, the default output format of most Exchange Management Shell cmdlets is based on an
80 - character display. If you change this number, make sure the value for Width under
Screen Buffer matches.

 4. Click OK to commit these changes and close Properties. The changes take effect the next time
Exchange Management Shell is started.

c01.indd 30c01.indd 30 12/17/07 3:19:32 PM12/17/07 3:19:32 PM

Chapter 1: Getting Started with Windows PowerShell

31

 Summary
 Windows PowerShell is the next - generation command - line shell and scripting language for
 Windows. Exchange Server 2007 is the first Microsoft application to utilize Windows PowerShell
for deployment and administration.

 Command shells provide a more flexible administrative interface compared to Graphical User
Interfaces (GUIs). Administrators use scripts to automate everyday tasks and resolve issues GUI
interfaces are not able to handle.

 Windows PowerShell is built on top of .NET Framework version 2.0 and exposes .NET classes as
built - in commands. Actions in Windows PowerShell are based on .NET objects that carry their
structure definition as well as the current state of their attributes. Windows PowerShell objects
have properties (which are characteristics) and methods (which are actions that you can take)
and can be passed from one command to another without the need for parsing.

 Exchange Management Shell extends Windows PowerShell to include more than 500 built - in
commands. Exchange Management Console is a GUI management application built on top of
Windows PowerShell.

 The most basic component of Windows PowerShell is the built - in commands called cmdlets.
Cmdlet names are made up of a verb name that identifies the action to take and the noun name
that identifies the object on which to take action. Cmdlets use named parameters to identify
individual properties or control how the cmdlet executes.

 Windows PowerShell includes a powerful help system available directly from the command line
that makes it easy to first discover and then learn how to use cmdlets.

 The Windows PowerShell tab expansion feature takes the drudgery and guesswork out of
typing commands by allowing you to automatically complete partially entered cmdlet and
parameter names using the Tab key.

 Windows PowerShell makes it possible to take the results of one cmdlet and pass it via pipeline
as input to another cmdlet for further processing. Using a pipeline to pass data from one cmdlet
to another is known as composition.

 Command sequences that are run on a regular basis can be stored in a Windows PowerShell
script file for execution. Sharing these scripts between all administrators in an organization
ensures consistent results.

 Further Reading
 If you want a more basic understanding of general Windows PowerShell usage outside of Exchange,
explore another fine Wrox publication:

 Professional Windows PowerShell ; Andrew Watt; ISBN: 978 - 0 - 471 - 94693 - 9; Wrox, 2004.

❑

❑

❑

❑

❑

❑

❑

❑

❑

c01.indd 31c01.indd 31 12/17/07 3:19:32 PM12/17/07 3:19:32 PM

c01.indd 32c01.indd 32 12/17/07 3:19:32 PM12/17/07 3:19:32 PM

 Using Exchange
Management Shell

 The Exchange Management Shell is the best tool overall for controlling your Exchange Server 2007
organization. This chapter provides an overview of the management functionality it provides.

 This chapter also explains why you should consider learning Exchange Management Shell an
essential part of building your Exchange Server 2007 management skills.

 The section “ Shell versus Console ” provides a comparison between the two interfaces in the
context of the Exchange management functions they provide and when to choose the Exchange
Management Shell.

 The section “ Working from the Command Line ” provides some basic information for getting
started using Exchange Management Shell. It covers navigation, using aliases and variables with
Exchange cmdlets, and some general tips you ’ ll find useful.

 The final section, “ Working with Windows, ” tells how to control services and processes, access the
Windows Registry as a drive, and view Windows event logs.

 In this chapter you learn:

 Exchange cmdlet sets

 Shell navigation

 Variables, aliases, and functions

 Profiles

 Process and service control

 Registry control

 Event log control

❑

❑

❑

❑

❑

❑

❑

c02.indd 33c02.indd 33 12/17/07 3:20:06 PM12/17/07 3:20:06 PM

Part I: PowerShell for Exchange Fundamentals

34

 Why Learn Exchange Management Shell?
 Because you are reading this book you have already taken steps to advance your knowledge of the
Exchange Management Shell. Maybe you already realize that Exchange Management Shell is a vital part
of Exchange Server 2007 management. Or maybe you are curious to find out just what this “ shell thing ”
does. Either way, learning how to use Exchange Management Shell is essential for any Exchange
administrator. For those of you that still may need some convincing, here are some points to consider:

 Exclusive Operations: Many operations available in Exchange Management Shell are not
included in Exchange Management Console; therefore you are forced to use the shell. In these
situations you have no other choice.

 Bulk Operations: Many of the operations available in the Exchange Management Console are
singular, in other words you can take action on only one object at a time. Large organizations
needing to perform changes to thousands of objects on a regular basis know that bulk
operations save time and lessen the chance of operator error. Using the pipeline to pass objects
from one cmdlet to another in Exchange Management Shell provides a quick and easy method
for taking action on any number of objects from the command line.

 Automation: Exchange Management Console provides no way for automating even simple
operations. Scripts run from the Exchange Management Shell ensure consistent results and can
be used to work out complex administrative tasks.

 Just how deeply you need to learn Exchange Management Shell depends a lot on your responsibilities. If
you administrate a large organization with multiple server roles, it is likely Exchange Management Shell
is used on a daily basis. Smaller organizations may not require as much use, but rest assured the shell is
used from time to time.

 Shell versus Console
 When first learning Exchange Server 2007 administration, there may be times when you ’ ll wonder which
options are available to you when choosing between the console and the shell interfaces. Without
knowledge of what you can accomplish from either interface, you may struggle to find the right path.

 This section gives a comparison of operations available in the Exchange Management Console and in the
Exchange Management Shell. It also describes the layout of the console and how this information can be
used to understand the structure of cmdlets in the shell. Included is a summary of Exchange cmdlets and
methods for categorizing these cmdlets based on administrative scope.

 Direct Comparison
 Each Exchange component has administrative functionality made available via cmdlets. That
functionality is always available in the Exchange Management Shell and may be available in the
Exchange Management Console. The availability of administrative functionality for a given Exchange
component falls into one of three categories:

 Parity: There is complete parity between the functionality available from the shell and the
console. Bulk operations and filtering are possible using shell commands but the console makes
it possible to accomplish the same operations to at least one object at a time.

❑

❑

❑

❑

c02.indd 34c02.indd 34 12/17/07 3:20:07 PM12/17/07 3:20:07 PM

Chapter 2: Using Exchange Management Shell

35

 Mixed: Most administrative functionality for a component is available using either the shell or
the console, whereas some operations can be accomplished only via a shell cmdlet. Usually
these cmdlets are used for configuration changes that an administrator would not make on a
regular basis and therefore are not available from the console.

 Exclusive: All operations for certain components are available only from the shell and have no
equivalent administrative functionality from the console.

 Parity Functionality
 When it comes to parity functionality, choosing the right interface depends on what you are trying to get
done. You may find it just as easy to use the Exchange Management Console for one - off quick operations
as opposed to using the Exchange Management Shell. For bulk operations you must use Exchange
Management Shell because most all operations in Exchange Management Console do not allow the
selection of more than one object at a time.

 Mixed and Exclusive Functionality
 For some mixed functionality and all exclusive functionality, you have no choice but to use the Exchange
Management Shell. The following table lists by category the Exchange components that have at least
some administrative operations that are available only via Exchange Management Shell.

❑

❑

 Category Role Description

 ActiveSync Client Access Most operations are available in the console,
while gathering ActiveSync usage information
is only possible using shell cmdlet
Export-ActiveSyncLog .

 Autodiscover Client Access Configuration of the Exchange Autodiscover
feature is only possible using shell cmdlets.

 Availability Service General Configuration of the Exchange Availability
Service feature is only possible using shell
cmdlets.

 CAS Mailbox features Client Access Most operations are available in the console,
while some granular configuration is only
possible using shell cmdlet Set-CASMailbox .

 CAS Virtual Directories Client Access Some configuration of features provided by
individual virtual directories is possible through
the console, while granular configuration of the
virtual directories is only available from the shell.

 Certificates Client Access Exchange certificates are managed using shell
cmdlets only.

 Clustered Mailbox
Server

 Mailbox While some management features are available in
the console, most operations are possible using
shell cmdlets only.

Table continued on following page

c02.indd 35c02.indd 35 12/17/07 3:20:07 PM12/17/07 3:20:07 PM

Part I: PowerShell for Exchange Fundamentals

36

 Category Role Description

 Edge Transport Edge Operations shared with Hub Transport are
 available from the console, while operations
 specific to the Edge role granular configuration
are only available using shell cmdlets.

 Exchange Server General While server roles have a presence in the console,
some specific configuration settings are only
possible via the shell.

 File Distribution Service Client Access The File Distribution Service can only be updated
using the Update-FileDistributionService
cmdlet.

 Mailbox Mailbox Most mailbox - related general configurations and
operations are possible from the console, while
granular configuration is only possible via
the shell.

 Messaging Records
Management

 Mailbox All operations are handled by the console except
for the Managed Folder Assistant, which can only
be started and stopped via shell cmdlets.

 Permissions General Full mailbox access permissions can be set via the
console, but other rights can only be set via shell
cmdlets. Active Directory permissions can also be
set via shell cmdlets as well as traditional means.

 Public Folders Mailbox Most public folder administration is made
possible by the console, while granular
configuration is only possible via the shell.

 Resource Management Mailbox Some resource management operations are
available from the console, while granular
configuration is only possible via the shell.

 Testing and Diagnostics General These cmdlets are used to test and confirm the
functionality of Exchange and are exclusive to
the shell.

 Transport Hub Transport Most operations are available from the console,
while granular configuration is only possible via
the shell.

 Unified Messaging Unified Messaging Most operations are available from the console,
while granular configuration is only possible via
the shell.

c02.indd 36c02.indd 36 12/17/07 3:20:07 PM12/17/07 3:20:07 PM

Chapter 2: Using Exchange Management Shell

37

 Exchange Management Console
 The Exchange Management Console is based on Microsoft Management Console (MMC) 3.0. The MMC
standard interface layout consists of a Tree pane for navigating the management elements, a Result pane
for displaying objects based on the currently selected management element, and an Action pane to
display the actions that can be taken on the currently selected objects in the Result pane.

 The Tree pane is arranged in a hierarchical order of management elements for an Exchange organization.
This arrangement provides a visual guide to aid the operator in finding and selecting a management
operation. Figure 2 - 1 shows the console Tree view taken from an instance of Exchange Management
Console installed with any combination of the four main server roles. Each node of the console tree
constitutes a management element in order of precedence:

 The Organization Configuration node consists of operations that control Exchange Server 2007
at a global level. Each server role is used to categorize the elements that apply to that specific
server role. For example, Address Lists are managed from the Mailbox selection and Accepted
Domains are managed from the Hub Transport selection.

 The Server Configuration node consists of operations that control individual servers and their
components. For example, from the Mailbox selection you can select a specific mailbox server
and then select and take action on one of its mailbox databases, such as mounting or
dismounting the database.

 The Recipient Configuration node is the most granular and provides access to the individual
mail - enabled objects of the organization. From this node you can mailbox enable or disable a
user, create contacts and distribution groups, and re - connect mailboxes to accounts in
Active Directory.

❑

❑

❑

Figure 2-1

c02.indd 37c02.indd 37 12/17/07 3:20:08 PM12/17/07 3:20:08 PM

Part I: PowerShell for Exchange Fundamentals

38

 The Toolbox node is not a true management element in the sense of the other nodes. It provides
an interface for selecting management tools that run outside of the Exchange Management
 Console. These tools include the Exchange Best Practices Analyzer as well as tools for public
folders, disaster recovery, mail flow analysis, and performance troubleshooting.

 The Exchange Management Console is a well-thought-out management interface. Because this book is
about Exchange Management Shell it may seem strange to cover the console interface at all. Actually,
understanding the organization of the Exchange Management Console is very helpful for understanding
the organization of Exchange Management Shell cmdlets.

 Exchange cmdlets are organized into groups based on how they are used. Exchange Management Shell ’ s
command - line interface lacks a method for providing a visual representation of its command
organization. Because Exchange Management Console is based on Exchange cmdlets, its visual
arrangement of management elements actually represents the underlying cmdlet organization that
cannot be represented in the shell. By learning this structure, you learn the basic organization of
Exchange cmdlets.

 Exchange Cmdlet Sets
 Exchange Management Shell provides more than 500 cmdlets for administering your Exchange
organization. Because Exchange Management Shell lacks the hierarchical command interface found in
Exchange Management Console, you may find it easier to manage cmdlets by thinking of them as being
organized into sets that share some commonality.

 Chapter 1 discussed using the Get-Help cmdlet to find other cmdlets and learn how to use them. The
 Get-Help cmdlet includes the Role parameter that allows you to retrieve cmdlets grouped by the
Exchange Server role with which they are used. Get-Help also provides the Component parameter to
group cmdlets by the Exchange Server component they are used to administer, and the Functionality
parameter to group cmdlets by the scope of their control. The scope can be on the organization level, the
server level, or the user level. This is similar to the categorization used in the Exchange Management
Console.

 These parameters allow you to retrieve Exchange cmdlets in logical groupings. For example, to quickly
find cmdlets used to control Clustered Mailbox Servers use the Component parameter with the value
 cluster as shown in this command:

[PS] C:\ > Get-Help -Component *cluster*

Name Category Synopsis
---- -------- --------
Move-ClusteredMailboxSe... Cmdlet This topic explains ho...
Start-ClusteredMailboxS... Cmdlet This topic explains ho...
Get-ClusteredMailboxSer... Cmdlet Use the Get-ClusteredM...
Stop-ClusteredMailboxSe... Cmdlet This topic explains ho...
Enable-ContinuousReplic... Cmdlet In the RTM version of ...
Test-ReplicationHealth Cmdlet Service Pack 1 introdu...

❑

c02.indd 38c02.indd 38 12/17/07 3:20:08 PM12/17/07 3:20:08 PM

Chapter 2: Using Exchange Management Shell

39

 You cannot use these parameters in combination with each other. You may find the results of the Role
and Functionality parameters are too broad to produce a comprehensive list of cmdlets, but the
 Component parameter can be used to produce a more focused list.

 Keep in mind that there is a certain amount of overlap when retrieving cmdlet sets using Get-Help . For
example, the cmdlets retrieved using the component value *cluster* in the previous command also
appear in a list generated when using the component value *highavailability* because the
Clustered Mailbox Server cmdlets also fall under the category of high - availability cmdlets.

 The following table details the appropriate values and results when using Get-Help with the
 Role parameter.

 Value 1 Value 2 Use to find:

 client *ca* Client Access Server administrative cmdlets

 edge *et* Edge Transport server administrative cmdlets

 hub *ht* Hub Transport server administrative cmdlets

 mail *mb* Mailbox server administrative cmdlets

 unified *um* Unified Messaging server administrative cmdlets

 org *oa* Exchange Organization administrative cmdlets

 rpct *ra* Exchange Recipient administrative cmdlets

 srv *sa* Exchange Server administrative cmdlets

 win *wa* Windows administrative cmdlets

 read *ro* Cmdlets that gather information without making
changes

 The following table details the appropriate values and results when using Get-Help with the
Component parameter.

 Value Use to find:

 addressing Address List and E - Mail Address policy cmdlets

 agent Transport Agent, Content/Sender Filtering, IP Allow/Block, and
Transport Rules cmdlets

 antispam IP Allow/Block, Content/Sender Filtering, and Anti Spam cmdlets

 autoDiscover Autodiscover cmdlets

 calendaring Availability configuration and Resource/Mailbox calendar setting
cmdlets

 certificate Exchange SSL certificate cmdlets

 classification Message Classification and Transport Rule cmdlets

Table continued on following page

c02.indd 39c02.indd 39 12/17/07 3:20:09 PM12/17/07 3:20:09 PM

Part I: PowerShell for Exchange Fundamentals

40

 Value Use to find:

 client Outlook Anywhere and CAS Mailbox cmdlets

 cluster Clustered Mailbox Server cmdlets

 compliance Transport Rule and Journal Rule cmdlets

 delegate Exchange Administrator delegation cmdlets

 diagnostic Message Queue cmdlets and cmdlets that test certain functionality

 domain Remote and Accepted Domain cmdlets

 extensibility Transport Agent and Web Services Virtual Directory cmdlets

 freebusy Availability Service configuration cmdlets

 gal Address List and Offline Address Book cmdlets

 group Group/Distribution Group/Dynamic Distribution Group cmdlets

 highavailability Clustered Mailbox Server and Local/Cluster Continuous Replication
cmdlets

 imap IMAP and CAS Mailbox cmdlets

 mailbox Mailbox, UM Mailbox, and Mailbox Permission cmdlets

 mailflow Transport Agent, Message Queue, Accepted/Remote Domain,
Receive/Send Connector, Edge Subscription, and Routing Group
Connector cmdlets

 managedfolder Messaging Records Management cmdlets

 mobility ActiveSync cmdlets

 oab Offline Address Book cmdlets

 outlook Outlook Provider and Outlook Anywhere cmdlets

 owa OWA and Exchange Web Services Virtual Directory cmdlets

 permission Active Directory Permission and Mailbox Permission cmdlets

 pop POP3 cmdlets

 publicfolder Public Folder cmdlets

 queuing Message and Message Queue cmdlets

 recipient Mail - enabled object (mailbox, contact, user) cmdlets

 routing Accepted Domain, AD Site Link, and Routing Group Connector
cmdlets

 rule Message Classification and Transport/Journal Rule cmdlets

 search Exchange Search cmdlets

 server Exchange Server cmdlets

 statistics Mailbox/Public Folder/Logon Statistic cmdlets

 storage Storage Group and Mailbox/Public Folder Database cmdlets

 um Unified Messaging cmdlets

 virtualdirectory Client Access Server Virtual Directory cmdlets

c02.indd 40c02.indd 40 12/17/07 3:20:09 PM12/17/07 3:20:09 PM

Chapter 2: Using Exchange Management Shell

41

 Working from the Command Line
 All action in the Exchange Management Shell starts at the command prompt. That is where the rubber
meets the road so to speak. To use Exchange Management Shell effectively you must familiarize yourself
with some basic concepts for navigation and control.

 Getting Around
 One of the first things with which you should become familiar is how to find your way around inside
Windows PowerShell. If you are familiar with other shells like cmd.exe , you already understand the
concept of file system navigation: named files and the hierarchical directories where these files are
located.

 In Windows PowerShell, this concept is expanded to include systems outside of the familiar file system.
These other systems can be accessed and navigated from the command line in the same way you
would navigate the file system. For example, you can navigate the Registry or certificate store on a
server using the same commands for navigating the file drives.

 Because other things besides files can be accessed from the command line, in Windows PowerShell all
these things are referred to as items . Carrying this concept further, the place where an item can be found
is referred to as a location .

 After starting a default instance of the Exchange Management Shell, the command prompt is presented
to the user with the current location set to the “ home ” file directory of the user context. The prompt is set
to always display the current location, making it easier for the users to know where they are. For
example, when logged on to a server as user exadmin , after starting Exchange Management Shell the
following command prompt appears:

[PS] C:\Documents and Settings\exadmin >

 To help users quickly learn how to get around Windows PowerShell, many related cmdlets have been
given aliases matching the names of commands found in other command shells. Chances are you
already know some of these common command names and can use many of them to get expected results
without knowing the underlying Windows PowerShell command that makes them possible.

 For example, you may be familiar with the cmd.exe commands cd and chdir , used for changing the
current working directory. In Windows PowerShell the cmdlet Set-Location is used for setting the
current location. Luckily you can use cd or chdir in the same way you would use Set-Location
without really needing to learn any new command names.

 Value Use to find:

 Global Cmdlets that administer objects on the organizational level

 Server Cmdlets that administer objects on a server level

 User Cmdlets that administer objects on the recipient level

 The following table details the appropriate values and results when using Get-Hel p with the
 Functionality parameter.

c02.indd 41c02.indd 41 12/17/07 3:20:10 PM12/17/07 3:20:10 PM

Part I: PowerShell for Exchange Fundamentals

42

 Using the previous example, the following command uses the relative path notation backslash character
to change the current location to the root of drive C:\ :

[PS] C:\Documents and Settings\exadmin> cd \

 Notice in this example the prompt is updated to show the current location after the command completes.
Also notice the space used between the cd alias and the backslash character (\). Because of the way Windows
PowerShell parses commands, there must be a space between a cmdlet or alias name and parameter values
passed to the command as input. This is different from the way cd behaves when used in cmd.exe .

 Other relative path notations recognized by Windows PowerShell include a single period (.) to represent
the current location, and double periods (..) to represent the parent of the current location.

 The following table describes the most common command names and the corresponding cmdlets you ’ ll
find useful for navigating locations and controlling items from the command line.

 Common Command
 Windows PowerShell
Command (& Alias) Description

 CD
CHDIR

 Set-Location (sl) Sets the current working location to a
specified location.

 PWD Get-Location (gl) Gets the current location.

 POPD Pop-Location Restores the previous value of the
location saved by Push-Location .

 PUSHD Push-Location Saves the current location then changes
to the specified location.

 DIR
LS

 Get-ChildItem (gc) Gets the items and child items in a
specified location.

 CLS
CLEAR

 Clear-Host Clears the console screen. *

 DEL
ERASE
RD
RMDIR
RM

 Remove-Item (ri) Deletes one or more specified items.

 MOVE
MV

 Move-Item (mi) Moves one or more items from one
location to another location.

 COPY
CP

 Copy-Item (cpi) Copies one or more items from one
location to another location.

 RENAME
REN

 Rename-Item (rni) Renames a specified item.

c02.indd 42c02.indd 42 12/17/07 3:20:10 PM12/17/07 3:20:10 PM

Chapter 2: Using Exchange Management Shell

43

 Common Command
 Windows PowerShell
Command (& Alias) Description

 MD
MKDIR

 param([string[]]$paths);
New-Item -type directory
-path $paths

 Creates a new item of file type
directory. * *

 TYPE
CAT

 Get-Content (gc) Gets the contents of an item at a
specified location.

*Clear-Host is a function and not a true cmdlet.
**MD and MKDIR are functions that use cmdlet New-Item to make items of type Directory.

 Windows PowerShell Drives
 Windows PowerShell drives are local data stores exposed to the command line that you can access like a
file system drive. Several drives are provided by default. To see a list of all available drives on a server
use the Get-PSDrive cmdlet as shown in this example:

[PS] C:\ > Get-PSDrive

Name Provider Root CurrentLocation
---- -------- ---- ---------------
A FileSystem A:\
Alias Alias
C FileSystem C:\
cert Certificate \
D FileSystem D:\
Env Environment
Function Function
HKCU Registry HKEY_CURRENT_USER
HKLM Registry HKEY_LOCAL_MACHINE
Variable Variable
Z FileSystem Z:\

 Windows PowerShell drives are exposed via providers, which are .NET programs that present the data
from each store in a consistent format. The following table describes the default providers in a standard
deployment of Exchange Management Shell.

 Provider Data Store Description

 Alias Windows PowerShell Alias Predefined and user - defined aliases

 Certificate X509 Certificates Certificates used for digital signatures and
data encryption

 Environment Windows Environment Variables Operating system environment variables

 FileSystem File System Drives Fixed, removable, and mapped drives

Table continued on following page

c02.indd 43c02.indd 43 12/17/07 3:20:11 PM12/17/07 3:20:11 PM

Part I: PowerShell for Exchange Fundamentals

44

 Provider Data Store Description

 Function Windows PowerShell Functions Predefined and user - defined functions

 Registry Windows Registry Both HKEY_CURRENT_USER and HKEY_
LOCAL_MACHINE Registry keys

 Variable Windows PowerShell Variables Predefined and user - defined variables

 To access the data in any Windows PowerShell drive, simply provide a path that includes the drive name
followed by a colon (:). For example, the following command is used to list the environment variables in
the Env drive that start with the word User :

[PS] C:\ > dir env:\user*

Name Value
---- -----
USERDOMAIN EXCHEXCH
USERDNSDOMAIN EXCHANGEEXCHANGE.LOCAL
USERPROFILE C:\Documents and Settings\exadmin
USERNAME exadmin

 To change from the current location to another drive, use the Set-Location command or one of its
aliases followed by the full path as shown in this example that sets the location to the Services key:

[PS] C:\ > cd HKLM:\SYSTEM\CurrentControlSet\Services
[PS] HKLM:\SYSTEM\CurrentControlSet\Services >

 To navigate from any of the non - file drives back to a file drive, simply type the drive letter followed by a
colon. Windows PowerShell has a set of predefined functions for each drive letter, with a definition of
 Set-Location < drive letter > . In the previous example, entering C: sets the current location back to
the previous location at the root of drive C:\ .

 Navigating Windows PowerShell drives is not exactly as straightforward as navigating a file system
drive. There are some distinctions you ’ ll need to keep in mind to use them effectively. The items and
structure of these drives differ greatly from file system items. The Alias, Environment, Function,
and Variable drive spaces are all flat, with only a root level and no hierarchy. You will also find that
some item cmdlets do not work as expected on certain drive items due to the way the items are defined.

 Navigating the Certificate and Registry drives offers some additional challenges due to the somewhat
complicated nature of the hierarchical structures and item properties. Working with the Windows
Registry using the Registry drives is discussed in further detail later in this chapter.

 Fortunately most Exchange administrative tasks can be handled by available cmdlets so you may never
have to navigate the non - file drives. Users who need to handle more sophisticated tasks, especially those
that are automated via scripting, may find it necessary to learn how to work directly with these drives.

c02.indd 44c02.indd 44 12/17/07 3:20:11 PM12/17/07 3:20:11 PM

Chapter 2: Using Exchange Management Shell

45

 Working with Output
 You may have noticed that most everything you do in Windows PowerShell results in the output of
some information to the screen. That is certainly true of all cmdlets that use the Get verb, and usually the
case for cmdlets that have been designed to give some feedback to the user so you know the outcome of
running the cmdlet.

 Any cmdlet that produces output at the end of the pipeline stream passes that information to an unseen
cmdlet called Out-Host . Anything at the end of the pipeline that is not redirected to another cmdlet is
automatically handled by Out-Host . Out-Host does not have to be explicitly called because it is the
default output handler. The output that appears on the screen can take one of two forms: raw and
formatted.

 Raw output is just raw object information without any special formatting. All properties for the
object are displayed along with their current values. If there are multiple objects in the stream,
the property values for all objects are displayed. The information is displayed in “ list ” form,
with each property on a single line.

 Formatted output is formatted to show what the cmdlet designer decided was the most
interesting information in the most useful form. The information is typically in “ table ” form,
with one or more properties for each object on a single line, with header labels at the top to
identify each property.

 Figure 2 - 2 shows an example of both raw and formatted output. The Get-TransportConfig cmdlet
produces an output of all properties in list format and Get-TransportServer produces just three
property values in table format.

❑

❑

Figure 2-2

c02.indd 45c02.indd 45 12/17/07 3:20:12 PM12/17/07 3:20:12 PM

Part I: PowerShell for Exchange Fundamentals

46

 In most cases when using Exchange Management Shell you will see table - formatted output. The
predefined formatting being used is specified in a file called exchange.format.ps1xml located in the
 Exchange\bin directory.

 When it is necessary to see information that is not included in default output, Windows PowerShell
provides several cmdlets that allow you to override the formatting to force the display of information
after it is passed to Out-Host . The two cmdlets you will find most useful for this purpose are
Format-Table and Format-List .

 Consider the cmdlet Get-Mailbox . The standard output for this cmdlet is table format, with property
values Name , Alias , ServerName , and ProhibitSendQuota as shown in the following example:

[PS] C:\ > get-mailbox johdoe

Name Alias ServerName ProhibitSendQuo
 ta
---- ----- ---------- ---------------
John Doe johdoe mb001 unlimited

 Suppose that you need to see different properties, such as Database and PrimarySMTPAddress instead
of ServerName and ProhibitSendQuota . Using Format-Table (or its alias ft) you can override the
default format by specifying the property names you want displayed separated by commas as shown in
this example:

 [PS] C:\ > get-mailbox johdoe | Format-Table name, alias, database, primarysmtpadd
ress

Name Alias Database PrimarySmtpAddress
---- ----- -------- ------------------
John Doe johdoe MB001\First Stor... johdoe@exchangee...

 So now you see the information that you are looking for, but because the default behavior of table
formatting is to truncate anything that cannot be displayed in the current column width and on one line,
you don ’ t get to see all the information. Notice there is some wasted space between columns. By adding
the AutoSize parameter you can force Format-List to more efficiently use the entire width of the
console screen as shown in this example:

[PS] C:\ > get-mailbox johdoe | Format-Table name, alias, database, primarysmtpadd
ress -AutoSize

Name Alias Database PrimarySmtpAddress
---- ----- -------- ------------------
John Doe johdoe MB001\First Storage Group\Mailbox Database johdoe@exchangeex...

c02.indd 46c02.indd 46 12/17/07 3:20:12 PM12/17/07 3:20:12 PM

Chapter 2: Using Exchange Management Shell

47

 Now you can see more information, but notice that the PrimarySMTPAddress column is still truncated.
By adding the Wrap parameter you can force Format-List to wrap values longer than one line to as
many additional lines required to display the entire value as shown in this example:

[PS] C:\ > get-mailbox johdoe | Format-Table name, alias, database, primarysmtpadd
ress -AutoSize -wrap

Name Alias Database PrimarySmtpAddress
---- ----- -------- ------------------
John Doe johdoe MB001\First Storage Group\Mailbox Database johdoe@exchangeexcha
 nge.com

 The Wrap parameter can be used independent of the AutoSize parameter. Format-Table also supports
wildcards when specifying property names.

 At times you may find displaying information in table format unworkable, such as when the number of
properties you want to display do not fit well in the width of the screen. Using Format-List (or its alias
 fl) you can change the default output of a cmdlet to list form and specify the property names to
display. To change the information displayed in the preceding example to list form, use the command
shown here:

[PS] C:\ > get-mailbox johdoe | Format-List name, alias, database, primarysmtpaddr
ess

Name : John Doe
Alias : johdoe
Database : MB001\First Storage Group\Mailbox Database
PrimarySmtpAddress : johdoe@exchangeexchange.com

 Format-List also supports wildcards to specify property names. To display all properties
use Format-List followed by * .

 After applying formatting, you may want to direct output to a file for reporting purposes. Using
Out-File at the end of the pipeline stream directs the output to the file specified by the FilePath
parameter. To write the output of the information in the preceding example to a text file called
 johndoembx.txt , use the following command:

[PS] C:\ > get-mailbox johdoe | Format-List name, alias, database, primarysmtpaddr
ess | Out-File -FilePath c:\johndoembx.txt

 Notice that in this example the Out-File cmdlet “ intercepted ” the output and nothing is displayed
on the screen. This is because the information was directed to Out-File and not Out-Host . Other
parameters for Out-File include Append and NoClobber . Use the Append parameter to add the
output stream to the end of the file specified by FilePath . The NoClobber parameter is used to
prevent the command from overwriting an existing file with the same path name that is specified by
 FilePath parameter .

c02.indd 47c02.indd 47 12/17/07 3:20:13 PM12/17/07 3:20:13 PM

Part I: PowerShell for Exchange Fundamentals

48

 Using Variables, Aliases, and Functions
 Windows PowerShell provides the ability to create user - defined command elements and store them in
memory to make entering and running commands easier.

 Variables
 Windows PowerShell variables are basically named objects that you can use later in another command.
Variable names begin with the $ character followed by any combination of alphanumeric characters. To
create a variable simply enter the name at the command line. The variable is created but no value is
assigned. To assign a value to a variable, enter the name followed by the equality symbol (=) and the
value. The value can be a literal value such as an integer or string value, or it can be the results of a
cmdlet. For example, to create a variable called $exservers and assign it the value of all Exchange
servers in the organization, use the following command:

[PS] C:\ > $exservers = Get-ExchangeServer

 Notice there is no feedback to indicate the command completed successfully. There is no feedback unless
the command fails. To see the values stored in the variable, simply enter the name:

[PS] C:\ > $exservers

Name Site ServerRole Edition AdminDisplayVe
 rsion
---- ---- ---------- ------- --------------
MB001 Default-First-Sit... Mailbox,... Standard... Version 8.0...

 Typing the name of the variable $exservers results in the redirection of its contents to the screen. The
output in this case is the same information that would have been displayed if the command used to
define the variable was run instead, so it retains the output format specified to the cmdlet.

 Once an object it stored in a variable, it can be used as input to any cmdlet that takes that object type.
Keep in mind that the variable is storing an object ’ s properties as well. This allows you to dereference
individual property values by using dot notation. For example, the following command displays the
values stored in the ServerRole property:

[PS] C:\ > $exservers.ServerRole
Mailbox, ClientAccess, HubTransport

 To see all the possible properties that you can dereference from a user - defined variable, use the
 Get-Member cmdlet followed by the InputObject parameter to specify the variable and
the MemberType parameter to specify Property as shown in this example:

[PS] C:\ > get-member -InputObject $exservers -MemberType Property

 TypeName: Microsoft.Exchange.Data.Directory.Management.ExchangeServer

c02.indd 48c02.indd 48 12/17/07 3:20:13 PM12/17/07 3:20:13 PM

Chapter 2: Using Exchange Management Shell

49

Name MemberType Definition
---- ---------- ----------
AdminDisplayVersion Property Microsoft.Exchange.Data.ServerV...
CurrentConfigDomainController Property System.String CurrentConfigDoma...
CurrentDomainControllers Property Microsoft.Exchange.Data.MultiVa...
...

 User - Defined Variable Lifetime
 User - defined variables have a lifetime of the current shell session. Once the shell is
closed, the variable definition held in memory is lost. To have user - defined variables
persist, add them to the Windows PowerShell profile to be loaded each time the shell is
started. Profiles are covered in greater detail later in this chapter.

 Automatic Variables
 Windows PowerShell includes a set of predefined variable definitions known as automatic variables.
 Automatic variables are either dynamic or static, but always set automatically by the shell. For example,
the $PID variable stores the current process ID for the current shell session. This is a unique value set
each time the shell is started. The $PSHome variable stores the directory path where Windows PowerShell
is installed. This value is static and never changes.

 To see a list of all variables and their values, enter dir variables: .

Exchange Variables
 Exchange Management Sell includes a set of Exchange - specific variables defined when the
Exchange.ps1 script file is loaded during startup. These variables provide an easy way to supply useful
file system path values to the command line. The three variables are $exbin (Exchange binary file
directory), $exinstall (Exchange install base directory), and $exscripts (Exchange scripts directory).

 You can use any of these variables in place of the underlying value they store. For example, to change the
current location to the Exchange bin directory, simply enter cd $exbin .

 Aliases
 As you have already seen, aliases provide a convenient method for substituting a shorter or easier to
remember name for an underlying cmdlet. Windows PowerShell includes a host of predefined aliases. To
see a list of all aliases, simply enter dir alias: to list the contents of the Variable drive. This list
includes the alias names and their definition (the cmdlet they are tied to).

 You can add your own alias definitions using the New-Alias and Set-Alias cmdlets. There are a few
simple rules to follow when creating your alias definitions:

 Some predefined aliases are read - only, so you cannot redefine them or make a new alias using
the same name. You can, however, safely redefine any aliases you create.

 Alias definitions only allow for the name of a cmdlet, so you cannot include any parameters or
values. Use functions to define more complex commands.

 Alias names must start with a letter, but the rest of the name can contain any combination of
alphanumeric characters.

❑

❑

❑

c02.indd 49c02.indd 49 12/17/07 3:20:14 PM12/17/07 3:20:14 PM

Part I: PowerShell for Exchange Fundamentals

50

 To create a new alias, use New-Alias or Set-Alias followed by the name of the alias and the name of
the cmdlet it represents as shown in this example for creating an alias called setweb for the cmdlet
Set-WebServicesVirtualDirectory cmdlet:

[PS] C:\ > Set-Alias setweb Set-WebServicesVirtualDirectory

 There is no feedback to tell you the command completed successfully. Use the Get-Alias cmdlet to
confirm an alias ’ s definition:

[PS] C:\ > Get-Alias setweb

CommandType Name Definition
----------- ---- ----------
Alias setweb Set-WebServicesVirtualDirectory

 Like user - defined variables, user - defined aliases persist only as long as the current shell session. You
need to add their definitions to the user profile to have them available each time the shell is started.

 Functions
 A Windows PowerShell function is a named block of code containing one or more commands that can be
run as a single command by entering the name of the function. Functions can be created as input
directly at the command line or included as part of a script. Use functions to accomplish more complex
tasks without the monotony of entering the same command elements over and over.

 Function definition begins with the keyword Function , followed by the name of the function and a
block of code enclosed in curly braces: {} . A function can contain a single or multiple commands, and
the definition can span multiple lines as long as opening brace is entered on the first line and the closing
brace is entered on the last line.

 Functions can take as input from the command line one or more arguments entered at the time the
function is run. By providing input values to the function as parameters, you can create flexible
command structures that provide the functionality you need without being limited to static values
embedded in the function itself.

 For example, the Get-Mailbox cmdlet by default displays results as Name , Alias , ServerName , and
 ProhibitSendQuota values in a table format. These may not be the most interesting values for your
needs, so you would like to have another cmdlet that displays a different set of values by default.
Creating a function that uses the Get-Mailbox cmdlet with customized output formatting is a quick and
easy way to get the results you need. Entering this function at the command line looks like this:

[PS] C:\ > Function get-mailbox2
 > > {
 > > param($name)
 > > Get-Mailbox $name | Format-List Name, Database, OrganizationalUnit
 > > }
 > >

c02.indd 50c02.indd 50 12/17/07 3:20:14 PM12/17/07 3:20:14 PM

Chapter 2: Using Exchange Management Shell

51

 The results of running this function along with a valid mailbox - enabled account identity as input looks
like this:

[PS] C:\ > get-mailbox2 johdoe

Name : John Doe
Database : MB001\First Storage Group\Mailbox Database
OrganizationalUnit : exchangeexchange.local/Users

 The definition of the function in this example starts with the Function keyword, followed by a unique
name, in this case Get-Mailbox2 . Be careful when choosing a name because Windows PowerShell does
no validation to prevent you from entering the name of an existing cmdlet. Names can contain any
alphanumeric character, but must always start with a letter.

 When you press Enter at the end of the first line, Windows PowerShell expects more instructions are to
be entered and drops to the next input line. The two greater than characters (> >) on the input line
prompt the user that Windows PowerShell is expecting more input. The script block then starts with
entering the left curly brace ({).

 The input parameter definition is very simple, using the keyword param followed by a variable name
enclosed in parentheses, in this case $name . This parameter will be used for inputting the identity of the
mailbox - enabled account for which the function gets information. Multiple parameter variable names
can be defined, separated by commas. The use of input parameters is optional, but their use extends the
usefulness of a function by allowing you to enter dynamic information at the time the function is run.

 The next line comprises the main command for this function. This command uses Get-Mailbox to get
information about the mailbox - enabled account identified by the $name parameter, then passes that
object to the Format-List cmdlet to output its Name , Database , and OrganizationalUnit properties
in list format.

 The script block is ended by entering the right curly brace (}) on a line by itself. Pressing Enter on the
blank last line ends function definition and writes it to memory. The command - line prompt then returns
to normal.

 Windows PowerShell does some limited validation of a function definition entered from the command
line before it is saved to memory. Any code in the script block that would cause a processing error, such
as divide by zero, is brought to the user ’ s attention and identified by the line and the character position
where the faulty code is located. If you make this type of mistake when entering a function from the
command line, the function is not saved to memory and the definition fails.

 There is no validation for cmdlet elements entered as part of a function definition. For example, the
misspelling or misuse of a cmdlet or parameter name is only exposed when the function is run. Function
definitions can be changed by re - entering the definition at the command line.

 Entering a function containing more than a few lines of code at the command line can be somewhat
frustrating; if you make any mistakes you have to start over. You may find it more useful to work out
and proof each individual element as a “ stand alone ” command before committing to their use together
in the script block.

c02.indd 51c02.indd 51 12/17/07 3:20:14 PM12/17/07 3:20:14 PM

Part I: PowerShell for Exchange Fundamentals

52

 Functions are stored in memory and exposed by the Function provider in the form of the function:\
drive. To view functions, access the function:\ drive by either changing the current location or by
getting a function ’ s information using the Get-Item cmdlet as shown in this example:

[PS] C:\ > Get-Item function:\get-mailbox2 | Format-list Definition

Definition : param($name) Get-Mailbox $name | Format-List Name, Database, Organ
 izationalUnit

 Function definitions entered at the command line last only as long as the current shell session from
which they were entered. To have a function available for use each time the shell is started, add
the function definition to the user profile.

 Using Profiles
 When you create user - defined aliases, variables, and functions, their definitions last only as long as the
current Windows PowerShell session used to create them. Because they are stored in memory, closing the
shell purges them and they are lost.

 To have these aliases, variables, and function definitions available for your use each time you start
Exchange Management Shell, create a Windows PowerShell profile script file and add these custom
definitions. Each time the shell is started these definitions are read from the profile script and loaded
into memory.

 Four types of profiles can be defined for use, but for Exchange Management Shell you will probably be
interested in just two of them: a profile that affects only the current user and a profile that affects all
users. The location of the profile script file determines the profile type:

 Current User: %userprofile%\My Documents\WindowsPowerShell\Microsoft
.PowerShell_profile.ps1

 All Users: windir%\system32\windowspowershell\v1.0\Microsoft.PowerShell
profile.ps1

 When Windows PowerShell starts, it checks these locations and loads the Microsoft.PowerShell_
profile.ps1 script files if found; the all users profile is loaded first followed by the current user profile.
By loading the all users profile script, all users have access to the same custom command elements
contained in the script. Additional elements can then be added to the current user profile script for more
specific command elements each individual user requires.

 Command elements loaded by the current user profile script override command elements of the same
name loaded by the all users profile script.

❑

❑

c02.indd 52c02.indd 52 12/17/07 3:20:15 PM12/17/07 3:20:15 PM

Chapter 2: Using Exchange Management Shell

53

 To create your own current user Microsoft.PowerShell_profile.ps1 script file and open it in
Notepad for editing, run the following commands:

[PS] C:\ > New-Item -Path $profile -ItemType file -Force

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\Documents and Settings\
 Administrator\My Documents\WindowsPowerShell

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 8/4/2007 12:25 PM 0 Microsoft.PowerShell_profile.ps1

[PS] C:\ > Notepad $profile

 The New-Item cmdlet is used to create a new item of type file in the location specified by the Path
parameter, in this case $profile . Windows PowerShell provides the automatic variable $profile ,
which always points to the path for the current user profile file. This makes it easy to create and edit the
profile file because this variable is always set according to the current user context. The new file is
opened for editing by invoking Notepad followed by the path to the profile file, again provided by the
 $profile variable.

 To add function, alias, and variable definitions to the profile file, simply add them as if you were
entering them from the command line. The following example adds the function definition from a
previous example, an alias definition, and a variable definition:

#Administrator’s current user profile
#updated 07-12-07: added variable definition

#Functions

Function get-mailbox2
{
param($name)
Get-Mailbox $name | Format-List Name, Database, OrganizationalUnit
}

#Aliases

Set-Alias getmbx Get-Mailbox

#Variables
$mb001 = (Get-ExchangeServer MB001)

 Use the pound character (#) to add comments to your profile file and keep it organized. Other command
elements can also be loaded by the profile script file. You can include any command as well as other
script files to load and run.

c02.indd 53c02.indd 53 12/17/07 3:20:15 PM12/17/07 3:20:15 PM

Part I: PowerShell for Exchange Fundamentals

54

 One command you may find very useful when added to your profile script is Start-Transcript . The
 Start-Transcript cmdlet creates a complete record of all actions from a shell session by writing each
command entered at the command line and each output displayed to the console screen to a transcript
log file. By default the transcript file is stored in the %UserProfile%\My Documents directory of the
current user. Each time Start-Transcript runs it creates a new transcript file named
PowerShell_transcript. < timestamp > .txt . You can override the default file path location
using the Path parameter.

 Working with Windows
 Windows PowerShell provides a powerful administrative interface for managing the Windows operating
system. From the command line you can determine and change the status of processes and services, read
and change Registry values, and access diagnostic information. This section covers Windows PowerShell
features you ’ ll find useful for managing your Windows servers.

 Controlling Processes
 At any given time there are dozens of processes active on an Exchange Server 2007 computer.
Traditionally administrators have used tools such as Windows Task Manager to determine the current
status of each active process. By default from Task Manager you can view the process name, the user
context under which it is running, the percentage of total CPU utilization, and the memory being used
by the process. This is all useful information to an administrator investigating certain issues like
performance or unexpected behavior.

 Windows PowerShell makes it possible to investigate these issues through the Get-Process cmdlet.
Using Get-Process you can collect detailed information about any processes running on an Exchange
Server 2007 computer. For example, to see the current state for the store.exe process, the following
command is used:

[PS] C:\ > get-process store

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 1098 207 101504 40132 371 6.02 1764 store

 The default output for Get-Process displays the current number of Handles opened by the process, the
Non - Paged Memory (NPM(K)) used by the process in kilobytes, the Paged memory (PM(K)) used by
the process in kilobytes, the size of the Working Set (WS(K)) in kilobytes, the Virtual Memory (VM(M))
used by the process in megabytes, the CPU(s) time used by the process total in seconds, the Process
Identifier number (ID), and the Process Name.

 Additional details for a process can be displayed by piping the results of Get-Process to the
Format-List cmdlet along with the names of properties of interest. Use the wildcard * character to
display all properties. Using these additional properties administrators can determine and confirm such
important details as file version, image path, process start time, and loaded modules to name a few.

c02.indd 54c02.indd 54 12/17/07 3:20:16 PM12/17/07 3:20:16 PM

Chapter 2: Using Exchange Management Shell

55

 Administrators can end processes using the Stop-Process cmdlet along with the Process Identifier. In
the following example the Get-Process cmdlet is used to get all processes for the application Notepad ,
and then the Stop-Process cmdlet is used to stop one of them:

[PS] C:\ > Get-Process notepad

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 62 2 868 3608 27 0.91 1020 notepad
 62 2 848 3600 27 0.29 2556 notepad

[PS] C:\ > Stop-Process 1020
[PS] C:\ > Get-Process notepad

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 62 2 848 3600 27 0.29 2556 notepad

 In this example the Process Identifier for both Notepad processes are returned by Get-Process . By
passing the Process Identifier 1020 to Stop-Process , the first instance of Notepad is ended and only
the second instance remains as confirmed by running Get-Process a second time.

 Ending a process using Stop-Process may cause unexpected results. Use Stop-Process only after
confirming the process to be stopped is properly identified and the process cannot be stopped
programmatically.

 Controlling Services
 Administrators typically manage services from the Services administrative tool provided as part of a
basic Windows operating system installation. Windows PowerShell provides a host of cmdlets for
managing Windows services from the command line. Using these cmdlets you can confirm the current
status of services as well as start, stop, pause, and resume them.

 To see a list of all services use the Get-Service cmdlet with no other arguments. On a typical
Exchange Server 2007 computer this can produce a list of more than 100 services. To display services in
which you are probably more interested, use the specific service name or wildcards to produce a list that
includes a particular keyword. For example, to see all services that include the word “ Exchange, ” use
the following command:

[PS] C:\ > Get-Service *exchange*

Status Name DisplayName
------ ---- -----------
Running MSExchangeADTop... Microsoft Exchange Active Directory...
Running MSExchangeAntis... Microsoft Exchange Anti-spam Update
Running MSExchangeEdgeSync Microsoft Exchange EdgeSync
Running MSExchangeFDS Microsoft Exchange File Distribution
Stopped MSExchangeImap4 Microsoft Exchange IMAP4
Running MSExchangeIS Microsoft Exchange Information Store
Running MSExchangeMailb... Microsoft Exchange Mailbox Assistants
Running MSExchangeMailS... Microsoft Exchange Mail Submission
Stopped MSExchangeMonit... Microsoft Exchange Monitoring

(continued)

c02.indd 55c02.indd 55 12/17/07 3:20:16 PM12/17/07 3:20:16 PM

Part I: PowerShell for Exchange Fundamentals

56

Stopped MSExchangePop3 Microsoft Exchange POP3
Running MSExchangeRepl Microsoft Exchange Replication Service
Running MSExchangeSA Microsoft Exchange System Attendant
Running MSExchangeSearch Microsoft Exchange Search Indexer
Running MSExchangeServi... Microsoft Exchange Service Host
Running MSExchangeTrans... Microsoft Exchange Transport
Running MSExchangeTrans... Microsoft Exchange Transport Log Se...
Running msftesql-Exchange Microsoft Search (Exchange)

 This narrows down the list quite a bit, but to see specific information about a service, provide the service
name and pipe the results to the Format-List cmdlet to display all properties as shown in this example:

[PS] C:\ > Get-Service MSExchangeIS | Format-List

Name : MSExchangeIS
DisplayName : Microsoft Exchange Information Store
Status : Running
DependentServices : {}
ServicesDependedOn : {NtLmSsp, RPCSS, LanmanWorkstation, LanmanServer, EventLo
 g}
CanPauseAndContinue : False
CanShutdown : True
CanStop : True
ServiceType : Win32OwnProcess

 From this output you can determine the current status for the service (Status), any services dependent
on this service (DependentServices), and services that this service depends on to be running before it
can start (ServicesDependedOn). Unfortunately, one property administrators find important for
managing services is not included in the results of Get-Service : the service start type. This information
is available only via the Windows Services application or the Registry.

 The rest of the services cmdlets are straightforward and almost self - explanatory as shown in the
following table.

(continued)

Cmdlet Description

Get-Service Use to list service properties and current status.

Set-Service Use to set the startup type for a service to one of three values using the
StartupType parameter: Automatic, Manual, and Disabled.

Start-Service Use to start a service that is currently stopped.

Stop-Service Use to stop a service that is currently running.

Restart-Service Use to stop and then automatically start a service that is currently running.

Suspend-Service Use to pause a currently running service.

Resume-Service Use to resume a service that is currently paused.

c02.indd 56c02.indd 56 12/17/07 3:20:17 PM12/17/07 3:20:17 PM

Chapter 2: Using Exchange Management Shell

57

 Working with Windows Registry
 There is probably no such thing as an Exchange administrator who can say he has never had to access
the Registry on an Exchange server to confirm or change a Registry setting. The Registry is a hierarchical
database used to store configuration information for users, applications, and hardware devices.

 Windows has always provided a Registry editing tool such as regedit.exe for just this purpose.
Because Windows PowerShell exposes the Registry to the user as a drive, you may find it useful to
understand how to access Registry settings and if need be, make changes.

 Standard boilerplate found on any Microsoft documentation that includes instructions for changing
values in the Registry includes a warning that incorrect use of the Registry editor can cause serious
problems that may require you to re - install your operating system. Using Windows PowerShell to
access and make changes to the Registry is no different from changing the Registry using any other
method. If you make a mistake, be prepared. Your efforts may produce unexpected results from which
you may be unable to recover.

 The Windows PowerShell Registry provider exposes two Registry hives as Windows PowerShell drives:

 The HKEY_LOCAL_MACHINE hive maps to the HKLM: drive. The HKLM: drive exposes
configuration information particular to the computer regardless of the currently logged - on user.

 The HKEY_CURRENT_USER hive maps to the HKCU: drive. The HKCU: drive exposes
configuration information for the user that is currently logged on to the computer.

 To access the Registry as a drive, simply change the current location to the appropriate drive using the
 Set-Location cmdlet or one of its aliases. To view the “ contents ” of the current location use the
Get-ChildItem cmdlet or one of its aliases. For example, to change the current location to the HKCU:
drive, and then navigate to the key for the MSExchangeIS service, use the following commands:

[PS] C:\ > Set-Location HKLM:\SYSTEM\CurrentControlSet\Services\MSExchangeIS
[PS] HKLM:\SYSTEM\CurrentControlSet\Services\MSExchangeIS > Get-ChildItem

 Hive: Microsoft.PowerShell.Core\Registry::HKEY_LOCAL_MACHINE\SYSTEM\CurrentC
ontrolSet\Services\MSExchangeIS

SKC VC Name Property

--- -- ---- --------
 3 0 Diagnostics {}
 4 0 MB001 {}
 0 7 ParametersNetIf {MaxPoolThreads, MaxConcurrency, Thre...
 0 5 ParametersPrivate {Background Cleanup, Background Searc...
 0 6 ParametersPublic {Background Cleanup, Background Searc...
 1 8 ParametersSystem {Working Directory, DB Recovery, DSA ...
 0 13 Performance {Close, Collect, Library, Open, PerfI...
 0 1 Security {Security}
 0 3 Enum {0, Count, NextInstance}

[PS] HKLM:\SYSTEM\CurrentControlSet\Services\MSExchangeIS >

❑

❑

c02.indd 57c02.indd 57 12/17/07 3:20:17 PM12/17/07 3:20:17 PM

Part I: PowerShell for Exchange Fundamentals

58

 Notice that the output here is quite a bit different than what you would see from a regular file system
drive. That is because the information held in the Registry is so much different than files and directories.
The Registry is made up of keys, which can be thought of as containers. Keys can contain sub - keys and
property values that are properties of the key in which they are contained. Sub - keys can contain more
sub - keys and property values of their own.

 In the output from dir in the previous example, the objects listed under the Name column are sub - keys
in the MSExchangeIS key. The SKC (sub - key count) column denotes the number of sub - keys contained in
that sub - key. The VC (value count) column contains a count of the number of values in that sub - key. The
 Property column lists each property value. For example, the Diagnostics sub - key contains three
sub - keys of its own, but no property values. The Performance sub - key contains no sub - keys, but has
13 property values.

 To work with Registry keys, use Item cmdlets: Get-Item , Set-Item , Rename-Item , Copy-Item ,
Move-Item , and Remove-Item . To work with Registry property values use ItemProperty cmdlets:
 Get-ItemProperty , Set-ItemProperty , Rename-ItemProperty , Copy-ItemProperty ,
Move-ItemProperty , and Remove-ItemProperty .

 To create a new Registry key, use the New-Item cmdlet followed by the Path parameter to specify the
key in which to create this key as a sub - key, the ItemType parameter to specify the type of item as “ key, ”
and the Name parameter to specify the name of the key. For example, to create a sub - key called test
under the key MSExchangeIS , use the following command:

[PS] C:\ > New-Item -Path HKLM:\SYSTEM\CurrentControlSet\Services\MSExchangeIS\
-ItemType key -Name test

 Hive: Microsoft.PowerShell.Core\Registry::HKEY_LOCAL_MACHINE\SYSTEM\CurrentC
ontrolSet\Services\MSExchangeIS

SKC VC Name Property
--- -- ---- --------
 0 0 test {}

 To remove this key use the Remove-Item cmdlet followed by the Path parameter to specify the full path
to the item to be removed:

[PS] C:\ > remove-Item -Path HKLM:\SYSTEM\CurrentControlSet\Services\MSExchangeIS\
Test

 Be very careful when using this command because it would be very easy to delete the wrong key from the Registry
by entering in an incomplete path. There is no confirmation to prevent you from deleting the wrong value and there
is no feedback to report the exact action that was taken.

c02.indd 58c02.indd 58 12/17/07 3:20:18 PM12/17/07 3:20:18 PM

Chapter 2: Using Exchange Management Shell

59

 To see the property values a key contains, use the Get-ItemProperty cmdlet followed by the Path
parameter specifying the path to the key containing the values, and the Name parameter to specify the
name of the property. If the current location is the key containing the value, use dot sourcing (.\) to
specify the current location. By omitting the Name parameter, all property values for the key are returned.
For example, to see all the property values held in the MSExchangeIS key use the following command:

[PS]HKLM:\SYSTEM\CurrentControlSet\Services\MSExchangeIS > Get-ItemProperty
-Path .\

PSPath : Microsoft.PowerShell.Core\Registry::HKEY_LOCAL_MACHINE
 \SYSTEM\CurrentControlSet\Services\MSExchangeIS
PSParentPath : Microsoft.PowerShell.Core\Registry::HKEY_LOCAL_MACHINE
 \SYSTEM\CurrentControlSet\Services
PSChildName : MSExchangeIS
PSDrive : HKLM
PSProvider : Microsoft.PowerShell.Core\Registry
Type : 16
Start : 2
ErrorControl : 1
ImagePath : “C:\Program Files\Microsoft\Exchange Server\bin\store.
 exe”
DisplayName : Microsoft Exchange Information Store
DependOnService : {EventLog, NtLmSsp, RPCSS, LanmanWorkstation, LanmanSe
 rver}
DependOnGroup : {}
ObjectName : LocalSystem
Description : Manages the Microsoft Exchange Information Store. This
 includes mailbox stores and public folder stores. If
 this service is stopped, mailbox stores and public fo
 lder stores on this computer are unavailable. If this
 service is disabled, any services that explicitly depe
 nd on it will fail to start.
DiagnosticsMessageFile : mdbmsg.dll

[PS] HKLM:\SYSTEM\CurrentControlSet\Services\MSExchangeIS >

 To change a property value use the Set-ItemProperty cmdlet with the Path parameter to point to the
key where the property value is located, the Name parameter to specify the name of the property value,
and the Value parameter to specify the value. In the following example the Start property value is
changed to 4 , which corresponds to startup type “ disabled ” :

[PS] C:\ > Set-ItemProperty -Path HKLM:\SYSTEM\CurrentControlSet\Services\MSExchan
geIS -Name startup -Value 4

 To add a property value, use the New-ItemProperty cmdlet with the Path parameter to point to the
key where the property value is to be located, the Name parameter to specify the name of the new
property value, the PropertyType parameter to specify the type of value to add, and the Value

c02.indd 59c02.indd 59 12/17/07 3:20:18 PM12/17/07 3:20:18 PM

Part I: PowerShell for Exchange Fundamentals

60

parameter to specify the new value. Valid property types are String , ExpandString , Binary , DWord ,
and MultiString . In the following example a DWord property value called “OAB Bandwidth
Threshold (KBps)” is being added with a value of 5000 to the ParameterSystem sub - key under
 MSExchangeIS :

[PS] C:\ > New-ItemProperty -path HKLM:\SYSTEM\CurrentControlSet\Services\MSExchan
geIS\ParametersSystem\ -Name “OAB Bandwidth Threshold (KBps)” -PropertyType DWor
d -Value 5000

PSPath : Microsoft.PowerShell.Core\Registry::HKEY_LOCAL
 _MACHINE\SYSTEM\CurrentControlSet\Services\MSE
 xchangeIS\ParametersSystem\
PSParentPath : Microsoft.PowerShell.Core\Registry::HKEY_LOCAL
 _MACHINE\SYSTEM\CurrentControlSet\Services\MSE
 xchangeIS
PSChildName : ParametersSystem
PSDrive : HKLM
PSProvider : Microsoft.PowerShell.Core\Registry
OAB Bandwidth Threshold (KBps) : 5000

 The default behavior when a property value is successfully added is to output the results as shown. Note
that the DWord value is always shown in decimal, and not in hexadecimal. This avoids the confusion
sometimes encountered when entering values from the Registry editor.

 To remove a Registry value, use the Remove-ItemProperty cmdlet followed by the Path parameter to
specify the key containing the value to remove, and the Name parameter to identify the property value
itself. For example, to remove the value added in the preceding example use the following command:

[PS] C:\ > Remove-ItemProperty -Path HKLM:\SYSTEM\CurrentControlSet\Services\MSExc
hangeIS\ParametersSystem\ -Name “oab bandwidth threshold (kbps)”

 Be very careful when using this command because it would be very easy to delete the wrong property
value from the Registry by entering an incorrect path and/or the wrong property value name. There is
no confirmation to prevent you from deleting the wrong value and there is no feedback to report the
exact action that was taken.

 Working with Event Logs
 All good administrators know that the first and best place to check when investigating issues on an
Exchange server is the event logs. Many times the nature of an issue is exposed in the events found in
one of the relevant event logs.

 Exchange Management Shell provides cmdlets for viewing event logs and setting diagnostic logging
levels for Exchange components.

 Viewing Event Logs
 Windows PowerShell uses the Get-EventLog cmdlet to provide access to event logs on the local server.
Several parameters are included to control how Get-EventLog works.

c02.indd 60c02.indd 60 12/17/07 3:20:19 PM12/17/07 3:20:19 PM

Chapter 2: Using Exchange Management Shell

61

 To display a list of all event logs that are available on the server along with their current properties, use
the List parameter as shown in this example:

[PS] C:\ > Get-EventLog -list

 Max(K) Retain OverflowAction Entries Name
 ------ ------ -------------- ------- ----
 16,384 0 OverwriteAsNeeded 2,512 Application
 512 0 OverwriteAsNeeded 139 Directory Service
 512 7 OverwriteOlder 60 DNS Server
 512 0 OverwriteAsNeeded 14 File Replication Service
 512 7 OverwriteOlder 0 Internet Explorer
 131,072 0 OverwriteAsNeeded 65,785 Security
 16,384 0 OverwriteAsNeeded 1,066 System
 15,360 0 OverwriteAsNeeded 496 Windows PowerShell

 This list is typical for a server acting as an “ all - in - one ” box running Windows 2003 Active Directory,
DNS, and Exchange Server 2007.

 To display the events from a particular event log, use the LogName parameter and the name of the
specific event log as shown in the list from the previous example. However, keep in mind that
this command lists every event in the log, which is probably not what you really want to do. For a log
containing hundreds and maybe even thousands of entries, you would find it next to impossible to use.

 Instead, add the Newest parameter followed by an integer value to limit the output to the number
specified. For example, to display the five newest events from the Application Event Log, use the
following command:

[PS] C:\ > Get-EventLog -LogName Application -Newest 5

Index Time Type Source EventID Message
----- ---- ---- ------ ------- -------
 2513 Aug 04 18:00 Info MSExchange ADAccess 2080 Process MSEXCHANGEADT...
 2512 Aug 04 17:45 Info MSExchange ADAccess 2080 Process MSEXCHANGEADT...
 2511 Aug 04 17:30 Info MSExchange ADAccess 2080 Process MSEXCHANGEADT...
 2510 Aug 04 17:15 Info MSExchange ADAccess 2080 Process MSEXCHANGEADT...
 2509 Aug 04 17:00 Info MSExchange ADAccess 2080 Process MSEXCHANGEADT...

 In this example the last five events generated are displayed in order from latest to earliest. The output
includes the time stamp for when the event was generated, the event type, the event source, the
event ID, and the message (truncated). To see the complete event message, pipe the results to
Format-Table or Format-List . You may find that using Format-List presents a more
comprehensive output than Format-Table does.

c02.indd 61c02.indd 61 12/17/07 3:20:19 PM12/17/07 3:20:19 PM

Part I: PowerShell for Exchange Fundamentals

62

 What makes more sense is to add a filter clause to filter for events that you may find more interesting.
Suppose you would like to check the most recent 2000 events for instances of errors and warnings from
source MSExchange ADAccess . The command would use the Where-Object cmdlet described in
Chapter 1 to filter for the event type and source as shown in this example:

[PS] C:\ > Get-EventLog -LogName Application -Newest 2000 | where {($_.entrytype -
eq “Error” -or $_.entrytype -eq “Warning”) -and $_.Source -eq “MSExchange ADAcce
ss”}

Index Time Type Source EventID Message
----- ---- ---- ------ ------- -------
 2191 Jul 22 21:02 Erro MSExchange ADAccess 2102 Process MAD.EXE (PID=...
 863 Jul 14 14:06 Warn MSExchange ADAccess 2121 Process STORE.EXE (PI...
 862 Jul 14 14:06 Erro MSExchange ADAccess 2104 Process STORE.EXE (PI...
 861 Jul 14 14:06 Erro MSExchange ADAccess 2102 Process MAD.EXE (PID=...

 This command uses Get-EventLog to gather the newest 2000 events from the Application event log.
This collection of event objects is then passed by pipeline to the where clause for filtering. The first part
of the filter checks to see if the event is of type “Error” or of type “Warning” . The second part of the
filter checks to see if the event is from source “MSExchange ADAccess” . If the event is either error or
 warning and from source MSExchange ADAccess , it is passed to the console for output.

 Parsing the event logs using this method can save time when compared to using the Event Viewer
Graphical User Interface. Other properties for which you can filter event logs include EventID and
 Message . You can filter for specific values inside the Message property using the like operator with
wildcards to present a string on which to use for filtering. In this way you can filter for events that
contain a specific string value such as a user ’ s name or an error code.

 Controlling Diagnostic Logging Levels
 Exchange Server 2007 has been designed to generate significant events without the need for any
additional configuration. These events should alert administrators to the presence of potentially serious
problems. However, there may be situations when it becomes necessary to generate additional events
based on the level of diagnostic logging that has been set for the corresponding component.

 Having the ability to control diagnostic logging levels allows the administrator to “ switch on ” only the
additional logging necessary for troubleshooting the issue at hand. This limits Application Event Log
 “ bloating ” and makes it much easier to parse event logs for relevant events. Exchange Management Shell
provides two cmdlets for working with diagnostic logging:

 Get-EventLogLevel

 Set-EventLogLevel

 Use the Get-EventLogLevel cmdlet to confirm the current diagnostic logging level, known as the
 EventLevel setting, for a given Exchange component. Component names are arranged by “ category
name\component name. ” There are more than 30 component categories, some of which also have
subcategories. To display a list of all categories and their components, enter Get-EventLogLevel
without any parameters.

❑

❑

c02.indd 62c02.indd 62 12/17/07 3:20:19 PM12/17/07 3:20:19 PM

Chapter 2: Using Exchange Management Shell

63

 To determine the current EventLevel of a given component, use Get-EventLogLevel followed by the
name of the component category, or the name of the specific component. For example, to display the
current diagnostic level for the Autodiscover category, use the following command:

[PS] C:\ > Get-EventLogLevel “msexchange autodiscover”

Identity EventLevel
-------- ----------
msexchange autodiscover\Core Lowest
msexchange autodiscover\Web Lowest
msexchange autodiscover\Provider Lowest

 Notice that the name of the category is encapsulated in quotes because it contains spaces. There are three
components under the Autodiscover category: Core , Web , and Provider . To display the EventLevel of
an individual component, use the full identity (category name\component name) as input to
 Get-EventLogLevel .

 There are five levels of diagnostic logging set by EventLevel : Lowest , Low , Medium , High , and Expert
 . Lowest is the default level for all components after installation of Exchange Server 2007. To change the
 EventLevel setting for a given component, use Set-EventLogLevel followed by the name of the
component plus the Level parameter followed by the EventLevel setting.

 For example, to set EventLevel on component “msexchange autodiscover\Core” to High , use the
following command:

[PS] C:\ > Set-EventLogLevel “msexchange autodiscover\Core” -Level High

 Set-EventLogLevel does not take wildcards as input, so it is not possible to change the
 EventLevel settings for all components in a category by using “ category name* ” as input.
However, Set-EventLogLevel does take pipeline input so it is possible to gather a collection of
components with Get-EventLogLevel and pass them to Set-EventLogLevel to change the setting
on all the components.

 For example, to set EventLevel on all components under “msexchange autodiscover” to Expert ,
use the following command:

[PS] C:\ > Get-EventLogLevel “msexchange autodiscover” | Set-EventLogLevel -Level
Expert

 Setting EventLevel for a given component is recommended only when Microsoft documentation
describes diagnostic logging as a way of troubleshooting a specific issue. Turning on diagnostic logging
for components not related to an issue can make troubleshooting more difficult due to the number of
unrelated events that would be generated in the Application Event Log.

 Always remember to set diagnostic logging back to the default level of Lowest once troubleshooting
is complete.

c02.indd 63c02.indd 63 12/17/07 3:20:20 PM12/17/07 3:20:20 PM

Part I: PowerShell for Exchange Fundamentals

64

 Summary
 Exchange Management Shell is a vital part of Exchange Server 2007 management and learning how to
use it is essential for any Exchange administrator. Many of the operations available in Exchange
Management Shell are not included in Exchange Management Console, and many of the operations that
are available in the Exchange Management Console are singular and can take action on only one object
at a time. Exchange Management Console provides no way for automating even simple operations,
whereas scripts run from Exchange Management Shell ensure consistent results and can be used to work
out complex administrative tasks.

 Each Exchange component has administrative functionality made available via cmdlets. That
functionality is always available in the Exchange Management Shell and may be available in the
Exchange Management Console. The availability of administrative functionality can be at Parity
(available in either interface), Mixed (some available in either interface, some only in the shell), or
Exclusive (only in the shell). For some mixed functionality and all exclusive functionality, you have no
choice but to use the Exchange Management Shell.

 The Exchange Management Console is a well thought out management interface. Understanding the
organization of the Exchange Management Console is very helpful for understanding the organization of
Exchange Management Shell cmdlets. Its visual arrangement of management elements actually
represents the underlying cmdlet organization that cannot be represented in the shell. By learning this
structure you learn the basic organization of Exchange cmdlets.

 Exchange Management Shell provides more than 500 cmdlets for administering your Exchange
organization. Because Exchange Management Shell lacks the hierarchical command interface found in
Exchange Management Console, you may find it easier to manage cmdlets by thinking of them as
organized into sets that share some commonality.

 All action in the Exchange Management Shell starts at the command prompt. To use Exchange
Management Shell effectively you must familiarize yourself with some basic concepts for navigation and
control. In Windows PowerShell, the concept of file system navigation is expanded to include systems
such as the Registry and certificate stores. These other systems can be accessed and navigated from the
command line in the same way you would navigate the file system.

 Windows PowerShell provides the ability to create and store in memory user - defined command
elements. Variables are named objects that can be used to store information that can be used as input to
commands. Aliases provide a method for creating shorter or more familiar names for cmdlets. Functions
allow administrators to group commands together in a named script block and run them all by entering
just the function name. Windows PowerShell profiles allow you to load user - defined Aliases, Variables,
and Functions into memory and run additional commands as required each time the shell is opened.

 Windows PowerShell provides cmdlets for controlling processes and Windows services. The Windows
Registry can be accessed similar to a file system from the command line, allowing the administrator to
confirm, add, and remove keys and property values. The Windows event logs are accessible from the
command line, and can be parsed using properties such as event ID, source, and event type. Diagnostic
logging for Exchange components is also controlled from the command line.

c02.indd 64c02.indd 64 12/17/07 3:20:20 PM12/17/07 3:20:20 PM

 Using PowerShell to Deploy
Exchange Server 2007

 Installing Exchange Server 2007 is different from installing previous generations of Exchange
products. New hardware and new server roles are just the tip of the iceberg. There are new
clustering and replication engines, more intelligent spam settings, and the ability to encrypt
communication between two Exchange Server 2007 organizations. It is indeed a very exciting
time to be involved with Exchange.

 This chapter discusses installation and deployment of Exchange Server 2007. The installation
pieces are broken down into hardware requirements, software requirements, and domain
requirements. Each one of these requires some planning because Exchange Server 2007 is 64 - bit
only. New servers may need to be purchased. You may need to perform compatibility testing of
your company ’ s products to ensure that backups, antivirus, and monitoring tools will work, as
well as a health check on the AD infrastructure to ensure that the domain is sufficient for Exchange
deployment. After the requirements are displayed, the setup switches are explained along with
information about what is required to prepare the environment. Though this may seem mundane,
it is necessary because there are switches available to ensure compatibility with legacy clients.
After the setup switches are discussed, we focus on deployment scenarios. Although we discuss
how many servers and what roles should be deployed, it is not an exhaustive list of every
deployment scenario. The scenarios are discussed as a prelude to the rest of the book. They are
presented to give you a cursory understanding of what the server role provides; the remaining
chapters in the book further discuss the individual parameters of their respective roles.

 In this chapter you learn:

❑ Exchange Server 2007 requirements

❑ Server installation

❑ Disaster recovery

❑ Deployment scenarios

c03.indd 65c03.indd 65 12/17/07 3:27:42 PM12/17/07 3:27:42 PM

Part I: PowerShell for Exchange Fundamentals

66

 Deploying Exchange Server 2007
 There are many prerequisites for Exchange Server 2007. In order to have a functional and supported
configuration, the Exchange administrator needs to understand the requirements and limitations of the
requirements.

 One of the biggest impacts on the design and deployment of Exchange Server 2007 is how other
applications in your environment interact with Exchange. Do you have systems that use forms stored in
a public folder, or create items in public folders? Do you have any existing applications that use custom
dlls or shims to interact with Exchange? Though these may seem like remote what - if scenarios, in the
original release of Exchange Server 2007 not all vendors supported their existing software interacting
with Exchange Server 2007. Many companies were left with no choice but to leave a legacy Exchange
2003 server in place to allow the legacy applications to continue to have connectivity to the messaging
system. As a result this section discusses the following requirements:

❑ Proper hardware sizing

❑ Software requirements

❑ Domain requirements

❑ Exchange organization requirements

 Hardware Requirements
 One of the biggest changes that Exchange Server 2007 brought forth is the requirement for a 64 - bit
processor. Sixty - four - bit processing takes advantage of larger addressable memory, increased number of
log files, and improved performance. Thirty - two - bit versions of Exchange Server 2007 are for lab use
only and are not supported in a production environment. The 32 - bit management tools, however, are
supported for production on 32 - bit machines. Intel ’ s Extended Memory 64 Technology (EM64T)
processor technology and AMD ’ s Opteron line of AMD64 processors are supported 64 - bit processors,
however Intel ’ s Itanium IA64 processors are not supported.

 With Exchange Server 2007, Microsoft committed to reducing the number of disk I/O operations per
second (IOPS) that mailbox servers would need by up to 70 percent. One way they were able to
accomplish this feat was by using the larger memory space available via 64 - bit processing. The Exchange
database process which uses the Extensible Storage Engine (ESE) is now able to cache more of
the database data in memory, thus it requires less reads from the disk subsystem. Retrieval of data
from memory is measured in nanoseconds (10 � 9), whereas retrieving data from disk is measured in
milliseconds (10 � 4). The difference between 10 � 9 and 10 � 4 of a second would be a similar to comparing a
1 GHz of processing power to 10k kHz of processing power! The suggested memory sizing requirements
are to have a minimum of 2GB of memory plus 5MB per mailbox. The Information Store will attempt to
use as much memory as possible to cache as many operations as it can. High memory utilization can
be expected on the Exchange Server 2007 computers, which is a change from Exchange Server 2003 and
is expected behavior.

 The page file should be set equal to the amount of physical memory installed on the computer plus an
additional 10MB of memory. This is partially for crash dumps, but Exchange will also page out some of
its operations to disk. If Exchange is excessively paging, however, it would require adding more physical
RAM to the server to improve performance.

c03.indd 66c03.indd 66 12/17/07 3:27:43 PM12/17/07 3:27:43 PM

Chapter 3: Using PowerShell to Deploy Exchange Server 2007

67

 The amount of disk storage that is required depends on the role of the server. All servers will need 1.2GB
of space for the Exchange install. Microsoft requires an additional 200MB of free space on the system
drive for related components. If Unified Messaging is installed on the server, add 500MB for each
language pack that will be installed. The Client Access, Hub Transport, Edge Transport, and Unified
Messaging roles do not store mailboxes, so disk sizing for these servers will be less than the mailbox
servers. However, remember that Hub Transport and Edge Transport servers will need space to queue
mail for the duration required to sustain an outage as well as enough space to store message tracking
and protocol logs. You will want to take these factors into consideration when finalizing your disk layout
for these server roles.

 All disk volumes should be formatted as NTFS, the screen resolution needs to be a minimum
of 800 � 600, and you will need a DVD - ROM drive to access the installation media. If there isn ’ t a
DVD - ROM drive you can make the install bits available on a network drive.

 The following list summarizes requirements:

❑ Processor:

❑ Intel processor that supports the Intel Extended Memory 64 Technology (Intel EM64T)
(The Intel Itanium IA64 processors are not supported)

❑ AMD processor that supports the AMD64 platform

❑ Memory:

 ❑ Minimum: 2 gigabytes (GB) of RAM

❑ Recommended: 2GB of RAM per server plus 5 megabytes (MB) of RAM per mailbox

❑ Page File:

❑ Equal to the amount of RAM in the server plus 10MB

❑ Disk Space:

❑ At least 1.2GB on the drive on which you install Exchange

❑ An additional 500MB of available disk space for each Unified Messaging (UM) language
pack that you plan to install

 ❑ 200MB of available disk space on the system drive

❑ Optical Drive:

❑ DVD - ROM drive, local or network accessible (if installing media from a DVD)

❑ Screen Resolution:

❑ 800 � 600 or higher

❑ File System:

❑ NTFS

c03.indd 67c03.indd 67 12/17/07 3:27:44 PM12/17/07 3:27:44 PM

Part I: PowerShell for Exchange Fundamentals

68

 Software Requirements
 Exchange Server 2007 must be installed on a 64 - bit capable server that is running Windows Server 2003,
Service Pack 2 x64 Edition. The Exchange installer will verify that Service Pack 2 is installed, and if it
isn ’ t the installer will not allow the installation to continue.

 Exchange Server 2007 can be installed on the following operating systems:

❑ Windows Server 2003 SP2, Standard x64 Edition

❑ Windows Server 2003 SP2, Standard x64 Edition, with Multilingual User Interface Pack (MUI)

❑ Windows Server 2003 SP2, Enterprise x64 Edition

❑ Windows Server 2003 SP2, Enterprise x64 Edition, with MUI

❑ Windows Server 2003 R2 with SP2, Standard x64 Edition

❑ Windows Server 2003 R2 with SP2, Standard x64 Edition, with MUI

❑ Windows Server 2003 R2 with SP2, Enterprise x64 Edition

❑ Windows Server 2003 R2 with SP2, Enterprise x64 Edition, with MUI

❑ Windows Server 2008 Standard 64 - bit Edition

❑ Windows Server 2008 Enterprise 64 - bit Edition

 The Management Tools can be installed on the following operating systems:

❑ 64 - bit:

❑ Windows Vista 64 - bit

❑ Windows XP Professional x64 Edition

❑ Any operating system that is supported for Exchange Server 2007

❑ 32 - bit:

❑ Windows Vista 32 - bit

❑ Windows XP SP2 32 - bit

 The following software components need to be installed. Additional requirements are listed here:

❑ All roles: .NET 2.0 is required in Windows 2003 and 2008. Installing .NET Framework 3.0 in
Windows 2008 is supported.

❑ Windows PowerShell 1.0 is also required if installing the management tools on a
non - Exchange machine.

❑ Microsoft Management Console (MMC) 3.0

c03.indd 68c03.indd 68 12/17/07 3:27:44 PM12/17/07 3:27:44 PM

Chapter 3: Using PowerShell to Deploy Exchange Server 2007

69

❑ Mailbox: This role provides storage of mail, public folder data, as well as voice mail and fax
messages. The following are required:

❑ IIS

❑ COM+

❑ World Wide Web Service

❑ Client Access Server: Client Access Server (CAS) provides the front - end functionality for
Exchange Server 2007. CAS is used for Outlook Web Access (OWA), Outlook Anywhere
(previously RPC/HTTP), Autodiscover and Availability, as well as ActiveSync.

❑ IIS

❑ COM+

❑ World Wide Web Service

❑ RPC over HTTP if the CAS server will be providing Outlook Anywhere services

❑ ASP.NET 2.0

❑ Unified Messaging: Unified Messaging provides voice mail, fax, AutoAttendant, and voice
access directly to the user ’ s mailbox. This functionality can further be integrated with Office
Communication Server to unleash a full suite of VoIP services for the enterprise.

❑ Microsoft Windows Media Encoder

❑ Microsoft Windows Media Audio Voice Codec

❑ Microsoft Core XML Services 6.0

❑ Cannot be installed on a server that has Microsoft Speech Server installed

❑ Edge: Edge services provide a non - domain SMTP server capable of message hygiene, antivirus
(AV), and antispam (AS) scanning. This role retrieves data through the use of an Active
Directory Application Mode (ADAM) instance, so security is further enhanced.

❑ ADAM (Active Directory Application Mode)

 The following components must not be installed on any Exchange server role.

❑ NNTP (Network News Transfer Protocol)

❑ SMTP (Simple Mail Transfer Protocol)

❑ NWLink IPX/SPX/NetBios

 Once suitable hardware has been obtained, preparation for the domain can begin.

 Domain Requirements
 Several requirements for both the domain controllers and for the domain and forest functional levels
must be met in order to have a functional and sustainable Exchange organization. Installing Exchange
Server 2007 in a new organization will prevent installation of previous versions of Exchange. If there is a
need for previous versions of Exchange, install Exchange 2000 or 2003 first and then add Exchange

c03.indd 69c03.indd 69 12/17/07 3:27:44 PM12/17/07 3:27:44 PM

Part I: PowerShell for Exchange Fundamentals

70

Server 2007 computers, because there is no way to install these older versions if Exchange Server 2007
was installed prior. The following list outlines domain requirements:

❑ Schema Master: Requires Windows Server 2003 SP1 or greater

❑ Global Catalog Servers: Minimum of 1 GC per site must have Windows Server 2003
SP1 or better

❑ Domain Controller: Windows Server 2003 SP1 or better

❑ Required in each site

❑ Required in each domain parent and child

❑ Required in each domain where /PrepareLegacyExchangePermissions will be run

❑ Non - English Domain Controllers: Hotfix 919166 or Windows Server 2003 SP2

❑ Active Directory Site: For every site that has a Mailbox server, a Hub server must also
be installed.

❑ For every site that has a Mailbox server, and has the necessity for Outlook 2007 or Outlook
Web Access client access, a CAS server must also be installed.

❑ Forest Level Function: If cross - forest trusts or forest - to - forest delegation is used, the functional
level must be Windows Server 2003.

❑ If free/busy information will be available to users in another forest, the functional level
must be Windows Server 2003.

❑ If free/busy information is not required, the forest level must be Windows Server 2000
native or better.

❑ Domain Functional Level: Windows Server 2000 native or better

❑ Exchange Organization: Native mode

❑ Exchange 5.5 Servers: Cannot exist in the same Exchange organization as Exchange Server 2007.

❑ Cannot exist in the forest.

❑ Exchange 2000: Exchange 2000 SP3

❑ Exchange 2000 Post - SP3 rollup kb870540

❑ Exchange 2003: Exchange 2003 SP2

 Once all of the domain requirements have been satisfied, Schema preparation can begin.

 Domain Preparation
 When a scripted install is invoked for the first Exchange Server 2007 computer in the forest or domain,
several preparatory steps must be performed prior to the actual server install. The following list of setup
switches will extend the Schema, create new security groups, and confirm the presence of system objects.

c03.indd 70c03.indd 70 12/17/07 3:27:45 PM12/17/07 3:27:45 PM

Chapter 3: Using PowerShell to Deploy Exchange Server 2007

71

 Setup /PrepareLegacyExchangePermissions or Setup /pl
 If there are Exchange 2000 or 2003 servers in the organization, this command should be run in each
domain that contains legacy Exchange servers. If a domain is not specified, setup will attempt to reach
all domains in the forest. This step is necessary for the Recipient Update Service (RUS) stamping to
work. In previous editions of Exchange, the user ’ s mailbox attributes would be created or set in Active
Directory (AD) and then would be read by Exchange servers via the RUS service. For detailed
information on permissions set by this switch, see the following topic in the Exchange Server 2007 help
file: “ Preparing Legacy Exchange Permissions. ”

 Setup /PrepareSchema or Setup /ps
 This command connects to the Schema master and applies the Exchange Server 2007 LDIF files to
prepare the Schema for Exchange Server 2007 and should only be run in a forest where /PrepareAd will
also be run. Manually importing the LDIF files through LDIFDE is not supported. If the
/PrepareLegacyExchangePermissions was not run, /PrepareSchema attempts to run it on all
domains in the forest.

 Setup /PrepareAD or Setup /p
 Execution of this command will check the objectVersion value for your organization to verify that the
Schema has been updated. An organization name is also required in this step. Specify the org name with
the /OrganizationName parameter. Once the Schema check is validated, /PrepareAD then creates the
global Exchange objects, the Exchange Universal Security Groups, sets the permissions on the created
objects, creates the Exchange Server 2007 Administrative Group, creates the Exchange Server 2007
Routing Group, and then creates the Unified Messaging Voice Originator contact.

 The Exchange Administrative Group as well as the Exchange Routing Group cannot be renamed. Also,
do not move the Exchange servers out of either of these groups. Doing so creates connectivity issues
with legacy versions of Exchange and also creates an unsupportable environment. In the event that
/PrepareLegacyExchangePermissions or /PrepareSchema was not run, /PrepareAD runs both of
them. It is advisable, however, to run each switch independently.

 Setup /PrepareDomain or Setup /pd or Setup /PrepareAllDomains
or Setup /pad

 When this switch is issued, permissions are set on the domain container for Exchange Servers, Exchange
Organization Administrators, Authenticated Users, and Exchange Mailbox Administrators. A new global
group called Exchange Install Domain Servers is created and added to the Exchange Servers USG in the
root domain. This switch should be run in all domains that will have Exchange Server 2007 installed as
well as in domains that contain mail - enabled users.

 Once all of the preparatory commands have been issued, installation of the first Exchange Server 2007
computer can begin.

c03.indd 71c03.indd 71 12/17/07 3:27:45 PM12/17/07 3:27:45 PM

Part I: PowerShell for Exchange Fundamentals

72

 Server Installation
 Many different command - line switches are available within Setup.com . The individual settings allow
for an answer file to be used, however populating all of the data in a text file is inefficient, and does not
allow for PowerShell to manipulate the values. The subsequent sections discuss all of the command - line
switches used within Setup.com . Within each of the explanations, PowerShell is introduced to show
how it can enhance the functionality of each switch.

 /mode or /m
 This parameter specifies how the setup command is used. There are four different setup modes:

❑ Install: Used for new installations. If the /mode parameter is not specified, setup will default to
install mode.

❑ Upgrade: Used to upgrade from previous pre - release versions of Exchange Server 2007. In - place
upgrades of RTM code are not supported through this option. However, an initial install of
Exchange Server 2007 into the Exchange organization can be with SP1. It is not required to
install the RTM software and then upgrade to SP1.

❑ Uninstall: Used to remove Exchange or a specific role.

❑ RecoverServer: Used to perform a disaster recovery of a server. For example, if a server crashes
and is rebuilt with the same server name, this option would be invoked to rebuild the server.
The server ’ s information is read from Active Directory and Exchange would be reinstalled, and
then any other role clean can occur.

 To install the UM role on a new server, the command would look like this:

Setup /r:UM

 Because this is an installation, setup defaults to installation mode, therefore /mode:Install is unnecessary.

 /roles or /r
 The /roles switch instructs the installer which Exchange roles to install or uninstall on the server. Multiple
roles can be installed by using a comma - separated list. The following list provides the roles and their syntax:

❑ Client Access (CA or C)

❑ Edge Transport (ET or E)

❑ Hub (HT or H)

❑ Mailbox (MB or M)

❑ Unified Messaging (UM or U)

 To install the Mailbox role on a server the command looks as follows: Setup.com /role:M . To remove
CAS from a server the command would look like this: Setup.com /r:c /m:uninstall .

 Windows PowerShell can be used to greatly simplify the installation of Exchange roles. Most
organizations have a naming specification based on the role of the server. For example, mailbox servers

c03.indd 72c03.indd 72 12/17/07 3:27:45 PM12/17/07 3:27:45 PM

Chapter 3: Using PowerShell to Deploy Exchange Server 2007

73

are usually named MB or MBX , and CAS servers are usually CA or CAS . By using a unified naming
structure, PowerShell can read the system hostname and then make a decision on what roles to install
based on the server name. The following script presents the decision logic:

$server=[system.net.dns]::gethostname()
if ($server -like”*UM*”) {“$role=U”} else
{if ($server -like”*ES*”) {$role=”E”} else
 {if ($server -like”*CA*”) {$role=”C”} else
 {if ($server -like”*HT*”) {$role=”H”} else
 {if ($server -like”*MB*”) {$role=”M”} else
 {if ($server -like”*EX*”) {$role=”M,H”} else
 {Write-Host “Server name does not match any known naming specification”}
 }
 }
 }
 }
}

 This script starts by getting the server ’ s hostname using a .NET call to request a DNS lookup on the
server. The response is assigned a variable of $server . From there an if else loop is constructed to run
using the like operator to search the $server variable for an expression. Based on the pattern that is
matched, it will either assign a value to the $role variable or it will write to the console that it was unable
to find a suitable match. Using this type of programming logic allows for system integrators, service
providers, and other companies to leverage PowerShell to perform an intelligent analysis of the server
name variable, and then make a decision as to what role should be installed and assigns the value to $role .

 Within the setup executable there are also numerous other command - line switches that allow for a
customized installation of Exchange. These switches are not necessary, however they are provided
to allow the Exchange administrator to have more control over how the product is installed, how to
interoperate with older versions of Exchange, and how to deal with non - default settings.

 /OrganizationName or /on
 The organization name parameter is used to create the new Exchange organization. This switch is used
in conjunction with /PrepareAD . Once the Exchange organization has been set, this parameter is no
longer used.

 /TargetDir or /t
 This switch is used to specify the path the installer will write the files to. If this switch is not used, by
default the installer will use the default location of %programfiles%\Microsoft\Exchange Server\ .

 /SourceDir or /s
 The only time this will be used is if the Exchange installation media location has been changed.

 /UpdatesDir or /u
 Specifying this parameter will instruct the installer to look for Updates.exe or *.msp files in the
directory specified.

c03.indd 73c03.indd 73 12/17/07 3:27:46 PM12/17/07 3:27:46 PM

Part I: PowerShell for Exchange Fundamentals

74

 /DomainController or /dc
 This switch is necessary in instances where there are Windows 2000 domain controllers in the
organization. Almost all of the install operations that interact with domain controllers must use a
Windows 2003 SP1 or better domain controller in order to correctly work. Use this parameter in
conjunction with all of the domain preparation commands if there are Windows 2000 domain controllers
in the organization. The NetBIOS name or the FQDN are acceptable values.

 /AnswerFile or /af
 The answer file is used to populate the various parameters within setup. It is the predecessor to using
PowerShell to populate data for the installer.

 /DoNotStartTransport
 When the Exchange installer is complete, by default the transport service will automatically start and
begin processing mail. In the event that third - party software needs to be loaded, additional
configurations are to be applied, or a final configuration management audit needs to be performed
before the server can begin processing mail, set the value for this switch to true .

 /EnableLegacyOutlook
 Although this switch is optional, the purpose it serves is important. Outlook 2000 and Outlook 2003
clients need public folder access. The Offline Address Book and free/busy information reside in the
public folder hierarchy and older versions of Outlook require these to be present. If this switch is not
used when the Mailbox role is installed, a public folder database will not be created automatically by the
Exchange installer. However, a public folder database can be created manually after the installation is
complete. This switch is only used for the first mailbox install in the organization. For more information
on public folder database creation, see Chapter 5 .

 /LegacyRoutingServer
 This parameter is used to denote connectivity to an Exchange 2000 or 2003 bridgehead server. If
interoperability between a legacy Exchange system and Exchange Server 2007 is required, this is used to
create the routing group connector.

 /EnableErrorReporting
 This switch is used to enable error reporting during the installation.

 /NoSelfSignedCertificate
 Exchange Server 2007 uses certificates for communications between devices. If there are already valid
certificates installed, this parameter will bypass self - signed certificate creation. The setting is only
available for UM and CAS servers.

c03.indd 74c03.indd 74 12/17/07 3:27:46 PM12/17/07 3:27:46 PM

Chapter 3: Using PowerShell to Deploy Exchange Server 2007

75

 /AdamLdapPort
 Because Edge servers are not part of the domain, and are on the perimeter network, they will not have
access to Active Directory to perform LDAP queries. As a result, Edge servers require an ADAM (Active
Directory Application Mode) instance. By default, ADAM uses port 50389. If a different port is required,
use this switch to specify another port.

 /AdamSslPort
 Specifies which port the Edge server should use for SSL connections to the ADAM instance.

 /AddUmLanguagePack
 When installing Unified Messaging the English language pack will be installed by default. If another
language needs to be installed, use this switch to specify the language. Each language takes
approximately 500MB of hard disk space. The following table lists the languages available for UM as
well as the .msi installer filename.

Language DefaultLanguage Value Filename

Dutch nl-NL Umlang-nl-NL.msi

English (Australia) en-AU Umlang-en-AU.msi

English (Great Britain) en-GB Umlang-en-GB.msi

English (United States) en-US Umlang-en-US.msi

French fr-FR Umlang-fr-FR.msi

French (Canadian) fr-CA Umlang-fr-CA.msi

German de-DE Umlang-de-DE.msi

Italian it-IT Umlang-it-IT.msi

Japanese ja-JP Umlang-ja-JP.msi

Korean ko-KR Umlang-ko-KR.msi

Mandarin (People’s Republic
of China)

zh-CN Umlang-zh-CN.msi

Mandarin (Taiwan) zh-TW Umlang-zh-TW.msi

Portuguese (Brazil) pt-BR Umlang-pt-BR.msi

Spanish es-ES Umlang-es-ES.msi

Spanish (Mexico) es-US Umlang-es-US.msi

Swedish sv-SE Umlang-sv-SE.msi

c03.indd 75c03.indd 75 12/17/07 3:27:46 PM12/17/07 3:27:46 PM

Part I: PowerShell for Exchange Fundamentals

76

 /RemoveUmLanguagePack
 Using this option will remove the specified language pack. The preceding table lists the UM
language packs.

 Additional Setup Switches Available for Clustered Installs
 Clustered installations require more information and as a result more command - line switches. The
following command - line switches provide the Exchange administrator the ability to declare the cluster
attributes such as the name of the Clustered Mailbox Server (CMS), the CMSIPAddress, and the location
of the CMSDataPath. These switches allow the Exchange administrator to further enjoy the benefits of
PowerShell scripting and use these switches to provide a base to build cluster scripts against.

❑ /NewCms : When creating a new Clustered Mailbox Server, this switch instructs the installer that
a new clustered mailbox installation is being performed.

❑ /CMSName or /cn : All Clustered Mailbox Servers must have Clustered Mailbox Server names.
This switch takes the parameter specified and uses it to create the Clustered Mailbox Server
name.

❑ /CMSIPAddress or /cip : Every Clustered Mailbox Server must have a unique IP address for
clients to connect to. This switch parameter specifies what IP address should be assigned to the
CMS.

❑ /CMSSharedStorage or /css : Cluster information should be stored on the shared disks. If this
switch is selected the installer will interrogate the disks to validate whether the data path is a
shared disk resource.

❑ /CMSDataPath or /cdp : This switch specifies the location of the shared disk. The location
specified has to be an already created folder on the target drive. Exchange Server 2007 will not
install directly on the root of a logical drive.

❑ /DomainController or /dc : Optional parameter used to specify the domain controller to use
during installation.

 Disaster Recovery
 A full discussion of disaster recovery of Exchange Server 2007 is beyond the scope of this book.
However, a relevant discussion of when to properly use the recover server feature, supported uses, and
what to expect after a recovery is presented here.

 There are several reasons why an Exchange server would need to be rebuilt. For example, the physical
hardware of the server could have failed, the operating system could have been corrupted beyond repair,
and virus activity or even operator error may require a bare metal restore of the system. Using the
recover server feature to migrate certain roles to new hardware, as long as the server name stays
the same, is also acceptable.

 Do not use the recover server mode as a means to repair a failed installation. The recovery mechanism
uses data that is stored in Active Directory to re - create the necessary configuration parameters on the
server. If an installation never successfully completes, the data in Active Directory is not complete and

c03.indd 76c03.indd 76 12/17/07 3:27:47 PM12/17/07 3:27:47 PM

Chapter 3: Using PowerShell to Deploy Exchange Server 2007

77

a recovery will only further complicate the problem. If the Exchange server that is to be restored has the
Edge role installed, using the recover server feature is also not supported. The Edge server ’ s
configuration is not stored in Active Directory, so upon recovery there would be no data available to
recover! If the server you wish to recover has had its data deleted from Active Directory, recover server
will not work. Also do not use the recover server feature to modify cluster configuration settings.

 Once the recover server process is complete, there may be instances where additional reconfiguration may
be necessary. The following bullet points describe some of the additional configuration options that
may be necessary before the server is fully operational:

❑ If any customization has been done to Exchange virtual directories in IIS, the customizations
will need to be reapplied.

❑ Any third - party software that is used in conjunction with Exchange will need to be reinstalled.

❑ If a mailbox server contained a public folder database, a new public folder database will need to
be created and replication of public folder data will have to take place.

❑ Hub servers may need any queued messages that were saved to be restored.

❑ Hub servers may need their connectors reconfigured.

❑ Dial tone restores require users to create new PINs as well as their greetings. Both of these
features are stored in the Exchange database and not in Active Directory.

❑ UM servers need any customized WAV files, prompts, or publishing point restored.

❑ Edge server reconfiguration can be simplified if the Edge server ’ s XML file is available. The Edge
server can then run ImportEdgeConfig.ps1 to import the XML file, and use its settings to
reconfigure the role. After the configuration is complete, run Start-EdgeSynchronization to
force an update of the data in ADAM.

 Deployment Scenarios
 In order to get the most out of this book, it is important to understand how all the roles tie together and
what the environment should look like. With recent advances in virtualization technology, entire
environments can be created in a virtual environment. In the past this required an expansive amount of
hardware to re - create the network and all of the server components. The scenarios are to be used as a
starting point to help assess where the servers should go, how many servers are needed, and what roles
are needed within the organization.

 Microsoft recommends that server roles be installed in a particular order. Once all of the Schema and
domain preparation has been completed, the Exchange roles should be deployed in the following order:

 1. Client Access Server role

 2. Hub Transport server role

 3. Mailbox server role

 4. Unified Messaging server role

 5. Edge server (this role can be deployed during any step, but will not be functional until after
the Hub Transport role has been installed)

c03.indd 77c03.indd 77 12/17/07 3:27:47 PM12/17/07 3:27:47 PM

Part I: PowerShell for Exchange Fundamentals

78

 Single Server Deployment
 For small organizations a single server containing the Client Access, Hub Transport, and Mailbox server
roles will be sufficient. The Exchange Server 2007 computer will be new to the existing Exchange
organization or could be a brand new deployment of Exchange. If there is an existing Exchange 2003
server, a new Exchange Server 2007 computer will have to be deployed to the organization, and
mailboxes and data will have to be migrated to it. A single server will work in a single site Active
Directory configuration. It does not provide any level of redundancy or high availability, but is useful in
a small office. In the event that the business grows, additional Exchange servers can be deployed, and
Exchange roles can be migrated to the new servers. To deploy a single server using this scenario, the
following tasks would have to be completed to have a base installation:

❑ Setup /PrepareLegacyExchangePermissions

❑ Setup /PrepareSchema

❑ Setup /PrepareAD

❑ Setup /PrepareDomain

❑ Setup /r:C,H,M,U

 The preceding list includes each of the preparatory steps that are necessary to prepare Active Directory
for the first Exchange Server 2007 installation. By specifying the CAS, Hub, Mailbox and Unified
Messaging role (C, H, M, U) through the role (/r:) switch, this server will be able to perform all the
roles on a single server. This deployment also includes permissions compatible with pre - 2007 clients.
One of the benefits of using this type of deployment is that it provides a single server that can be used to
test the functionality of Exchange Server 2007 against your environment. This type of deployment is also
advantageous for smaller companies that do not want to deal with the additional cost of having a
dedicated server for each role. By default if the Management Tools are not installed on the server, the
installer will also install them.

 Standard Deployment
 Exchange Server 2003 had a simple configuration wherein a server was basically a front - end or back - end
server. Front - end servers were used to provide the entry point of Simple Mail Transport Server (SMTP)
messages into the organization, OWA access, ActiveSync connectivity, as well as RPC/HTTP end point
termination. Exchange Server 2007 has spilt this into two separate roles to provide better performance
and increased security: Edge servers and Client Access Servers. Figure 3 - 1 shows the topology of a
standard deployment. This type of deployment would be for single site. If additional sites are added but
are too small to warrant their own Exchange servers, the remote offices would just connect to the CAS
and mailbox servers in this site. A single site is advantageous to reduce complexity and hardware costs,
but in the event of a network or site outage all messaging services will be impacted.

c03.indd 78c03.indd 78 12/17/07 3:27:47 PM12/17/07 3:27:47 PM

Chapter 3: Using PowerShell to Deploy Exchange Server 2007

79

Figure 3-1

 In a standard deployment a company would have two Edge servers deployed to provide the SMTP
connectivity to the Internet. The Edge servers will perform the message hygiene functions, mail relay,
and filtering. A minimum of two servers are required to provide redundant connections for internal and
external message flow.

 The user - experience pieces — ActiveSync, OWA, and RPC/HTTP — have been rebranded and packaged
into the Client Access Server role. The CAS role does not provide any message routing or message
management features. It is used to allow users of Outlook Anywhere, ActiveSync, and OWA a point of
presence. It also performs the Autodiscover and Availability service. In a standard deployment there
would be two CAS servers in the organization. Unlike Edge servers, CAS can be deployed with other
roles on the same server.

c03.indd 79c03.indd 79 12/17/07 3:27:48 PM12/17/07 3:27:48 PM

Part I: PowerShell for Exchange Fundamentals

80

 Whenever a message is sent within an Exchange Server 2007 organization, it must leave the mailbox
server and be routed to a Hub Transport server. Because of this, message scanning has been removed
from the Information Store to increase stability of the database to the Hub Transport role. As a result of
this, the Hub Transport role should also be deployed in a two server minimum configuration. This
way in the event of a Hub server maintenance or if the Hub server is unavailable, there is another
Hub Transport available. The Hub role can also be installed on any Exchange server that is not an Edge
Transport or part of an MSCS cluster server.

 Depending on the criticality of users being able to access their mailboxes, several options are available
for the Mailbox role. A standard deployment may use only one mailbox server. If a high - availability
option is required, Single Copy Cluster (SCC) or Continuous Content Replication (CCR) can be used to
deliver a higher level of uptime.

 Unified Messaging is a new feature that has been added to Exchange Server 2007. In a standard
deployment, your organization may or may not use this feature. It is not required in order for your
environment to run, however the increased functionality and integration with Office Communication
Server allow for a tighter collaboration of messaging technology. With a standard deployment, one
UM server should be deployed to every site. If UM is a key piece of technology within the organization,
multiple servers can be deployed and have membership in multiple dial plans. UM can coexist with all
other roles except Edge, and cannot be installed on an MSCS cluster.

 Complex Deployments
 A large deployment can be one that spans multiple physical sites, multiple domains, or even multiple
forests. Exchange server placement is highly dependent upon roles and user presence. Edge Transport
servers can be geographically dispersed to allow for site redundancy. Hub Transport, Client Access, and
mailbox servers can be consolidated to just one data center or geographically dispersed. Server
placement depends upon the network infrastructure, the logical boundaries of the domain, and user
need. Figure 3 - 2 shows a multisite, multidomain configuration. The Exchangeexchange.local forest
has two child domains, US and EU. There are sites two sites within each child domain. Edge servers are
deployed outside of the domain at each of the large sites. A failure at one site will not affect the ability to
send and receive email from the Internet for the entire company. As required for message routing and for
user accessibility, wherever there are mailbox servers there are also CAS and Hub servers. Smaller sites
such as sites 2 and 4 require only a global catalog server at the site. These smaller sites connect to the
larger office either via Outlook Anywhere, or natively through MAPI. Smaller office deployments may
be numerous and each remote office may not be able to justify the cost of having Exchange servers at
every site. A deployment of this model results in a hub and spoke topology. When a smaller office grows
in capacity to the point where it needs its own Exchange, then new Exchange servers can be configured,
and the user mail migrated.

c03.indd 80c03.indd 80 12/17/07 3:27:48 PM12/17/07 3:27:48 PM

Chapter 3: Using PowerShell to Deploy Exchange Server 2007

81

Figure 3-2

 Summary
 This chapter focused on preparing for and deploying Exchange Server 2007. Exchange Server 2007 is the
first Microsoft product to ship that is 64 - bit only. The hardware now must be 64 - bit capable, just as the
software. One of the goals of Exchange Server 2007 was to reduce the overall I/O to the disk subsystem.
Taking that goal into consideration along with the 64 - bit memory addressing scheme, more objects are
now cached into memory on mailbox servers, requiring mailbox servers to have more memory but
allowing for less expansive disk systems.

 Server roles have evolved from prior editions as well. CAS servers have an increased role over their
previous Exchange 2003 front - end counterpart. Just like front - end servers did, CAS handles all of the
web - based user connections. However, CAS also handles the new Autodiscover and Availability service.
This service is critical because it replaces the free/busy public folder and it also serves as an automatic

c03.indd 81c03.indd 81 12/17/07 3:27:48 PM12/17/07 3:27:48 PM

Part I: PowerShell for Exchange Fundamentals

82

configuration tool. The hub takes on an increased role due to the fact that all messages, even those sent
to users on the same mailbox server, now must pass through the Hub server. If increased security is
needed, Edge servers can be deployed to handle the Internet point of presence for SMTP for the
organization. Because the servers are not on the domain, in the event of compromise, the attacker does
not automatically obtain the ability to have permissions in AD. Though Unified Messaging is not new
technology, incorporating it natively into an Exchange product is. This allows for tighter collaboration
between Unified Messaging and Office Communication Server.

 With the introduction of roles that are installed as a command - line switch, the setup and install has
changed considerably from previous editions. However, this considerably reduces the number of extra
services installed on a server. Setup includes new switches to allow for backward compatibility of clients
as well as to give the administrator the ability to perform a higher degree of customization during install.

 Scenarios were provided as a tool to help examine how your organization will look when deploying
Exchange Server 2007. Most companies will be performing a migration from a previous edition, and
depending on whether it is a 5.5 or 2003 migration, overall planning, scope, and time frame can
change considerably.

c03.indd 82c03.indd 82 12/17/07 3:27:49 PM12/17/07 3:27:49 PM

 Working with User and
Group Objects

 In Exchange Server 2000/2003, Exchange mailbox user objects are created in Active Directory and
thereafter can be viewed in Exchange System Manager. The only operations that can be performed
on these objects from the Exchange System Manager are to purge, reconnect, or run Exchange
tasks. Available tasks performed by the Exchange Tasks Wizard are limited to move mailbox,
delete mailbox, and configure Exchange features. No other Recipient type or group can be
managed in the Exchange System Manager. Moreover, it is difficult to distinguish Recipient types
simply by the object ’ s icon in Active Directory Users and Computers.

 In Exchange Server 2007, however, creation and management of Recipient and group objects
including their Exchange - related properties have been incorporated into the Exchange
Management Console and Exchange Management Shell. The Exchange Management Shell enables
you to carry out various operations on Recipient and group objects, some of which are not
available in the Management Console. In addition, distinguishing Recipient types is easy in
Exchange Server 2007 because explicit Recipient Types properties have been added. Their icon
in the Exchange Management Console makes them easy to recognize or you can look at the
 RecipientTypeDetails property for the Recipient in Exchange Management Shell.

 At the end of this chapter, you will be able to identify the Recipient and group object types
associated with Exchange Server 2007. You will also become familiar with the Exchange
Management Shell cmdlets that operate on these objects, differentiate between these object types,
and carry out common tasks associated with these objects in the Exchange Management Shell.

 This chapter covers:

❑ Recipient scope in the Exchange Management Shell

❑ All available Recipient types in Exchange Server 2007

c04.indd 83c04.indd 83 12/17/07 5:27:15 PM12/17/07 5:27:15 PM

Part I: PowerShell for Exchange Fundamentals

84

❑ Creating and modifying Exchange Server 2007 Recipient types including features introduced in
Service Pack 1

❑ Bulk management scenarios

 Working with Recipients
 People and resources are at the core of any messaging system. Ultimately, any server operation is geared
toward efficiently delivering a message to a mail Recipient, which could be to an individual, public
folder, or designated resource.

 Although messages are ultimately delivered to people or resources, the term Recipients actually refers to
mail - enabled Active Directory Service objects. These objects in themselves do not store messages sent
to them, neither are the messages stored in Active Directory; rather, the messages are stored on
an Exchange Server mailbox or public folder. Operations performed on these objects by the
Microsoft Exchange Management Shell cmdlets affect how messages are sent or received.

 You first give attention to the Recipient scope, which can affect results you obtain while working with
the Exchange Management Shell.

 Recipient Scope in the Exchange Management Shell
 While working with user and group objects in the Exchange Management Shell, be sure to keep in mind
the Recipient scope of the Exchange Management Shell. The Recipient scope refers to the specified portion
of the Active Directory Service hierarchy that the Exchange Management Shell uses for Recipient
management. When you set the Recipient scope to a specific location within Active Directory, you can
view and manage all Recipients stored in that location and all of the containers under it.

 You may need to change the scope to view all Exchange Recipients or objects in the forest or Recipients
in other domains or organizational units. If you attempt to retrieve or modify objects outside your
current Recipient scope, you may receive errors. For example, if the Recipient scope of the Exchange
Management Shell is set to a specific OU, ExchangeExchange.local/ExOU , say, attempting to create a
new user or group in the Users Container that is outside the current Recipient scope would result in the
error shown in Figure 4 - 1 . Notice that the Exchange Management Shell scope is set to
 ExchangeExchange.local/ExOU .

Figure 4-1

c04.indd 84c04.indd 84 12/17/07 5:27:18 PM12/17/07 5:27:18 PM

Chapter 4: Working with User and Group Objects

85

 Subsequently, changing the Recipient scope to the domain using the $AdminSessionADSettings
variable enables you to successfully create the group as shown in Figure 4 - 2 . Minimum permissions
required are Exchange View - Only Administrator and member of the Local Administrators group on the
Exchange Server.

Field Description

ViewEntireForest By default this field is set to $false. Setting it to $True
enables you to view and manage all Recipients in the forest
using the Exchange Management Shell. To view and
manage all Recipients in the forest, set this field to
$True by running:

$AdminSessionADSettings.ViewEntireForest =
$True

DefaultScope If the ViewEntireForest field is set to $True, the
Exchange Management Shell ignores this field. It is set to
null. This field stores the Recipient scope for the current
session of the Exchange Management Shell in canonical
format. For example, if the Recipient scope is set to the
ExOU OU in the ExchangeExchange.local domain, the
value for DefaultScope will be ExchangeExchange
.local/ExOU.

Figure 4-2

 When the Recipient scope is changed in the Exchange Management Shell, this variable is retained until
the Exchange Management Shell is closed. The default settings are restored the next time the Exchange
Management Shell is opened. By default, the Exchange Management Shell starts with the Recipient
scope at the domain level. Neither the user account that is being used nor the Exchange servers being
managed has bearing on the default value of the Recipient scope. Changing the Recipient scope in the
Exchange Management Shell changes the set of Recipients that are returned for the Get- cmdlets of the
Recipient.

 You can view or modify the Recipient scope by using available fields stored in the
 $AdminSessionADSettings variable, as shown in the following table:

Table continued on following page

c04.indd 85c04.indd 85 12/17/07 5:27:18 PM12/17/07 5:27:18 PM

Part I: PowerShell for Exchange Fundamentals

86

Field Description

PreferredGlobalCatalog If this field is specified, and if ViewEntireForest is set to
$true, the Exchange Management Shell uses the specified
global catalog server to query for Recipients. Exchange
automatically selects a suitable global catalog server
if the PreferredGlobalCatalog is not set.

You can set a preferred global catalog by running:

$AdminSession ADSettings.PreferredDomainContro
llers = “AD01.ExchangeExchange.local”

ConfigurationDomainController This field specifies the domain controller that the Exchange
Management Shell uses to read the Exchange configuration
information.

PreferredDomainControllers If this field is specified, and if ViewEntireForest is set to
$false, the Exchange Management Shell uses the specified
domain controllers to query for Recipients. However, only
one domain controller can be specified per domain. If this
field is not specified, Exchange automatically selects a suit-
able domain controller. You can specify multiple domain
controllers if the Recipient scope spans more than one
domain or ViewEntireForest is set to $true.

For example, run the following to set the Recipient scope to
the entire forest and configure multiple preferred domain
controllers as global catalog servers:

$AdminSessionADSettings.ViewEntireForest =
$True$
AdminSessionADSettings.PreferredGlobalCatalog =
“AD01.ExchangeExchange.local”
$AdminSessionADSettings.PreferredGlobalCatalog =
“AD02.ExchangeExchange.local”

 Next, you take a closer look at the Recipient and group types available in Exchange Server 2007.

 User and Group Object Types
 An Exchange Recipient or group object is an Active Directory Services user, contact, or group object that
has associated Exchange mail or mailbox properties that enable receipt or delivery of mail. Before
reviewing the Exchange Management Shell operations in creating or modifying user and group objects,
it would be helpful to identify these object types.

c04.indd 86c04.indd 86 12/17/07 5:27:19 PM12/17/07 5:27:19 PM

Chapter 4: Working with User and Group Objects

87

 This section covers the following cmdlets for identifying user and group object types available in
Exchange Server 2007:

❑ Get-Recipient

❑ Get-User

❑ Get-Mailbox

❑ Get-MailUser

❑ Get-Contact

❑ Get-MailContact

❑ Get-Group

❑ Get-DistributionGroup

 ❑ Get-DynamicDistributionGroup

❑ Get-OrganizationConfig

❑ Get-MailPublicFolder

 Get - Recipient
 This is perhaps one of the most commonly used cmdlets for returning Recipient objects and their
attributes in Active Directory. The list of parameters is shown here. For a detailed list run the following
in the Exchange Management Shell: get-help Get-Recipient -detailed .

Get-Recipient [-Identity < RecipientIdParameter >] [-Credential < PSCredential >]
[-DomainController < Fqdn >] [-OrganizationalUnit < OrganizationalUnitIdParameter >]
[-ReadFromDomainController < SwitchParameter >] [-RecipientType < RecipientType[] >]
[-RecipientTypeDetails < RecipientTypeDetails[] >] [-ResultSize < Unlimited >] [-SortBy
 < String >] [< CommonParameters >]
Get-Recipient [-Credential < PSCredential >] [-DomainController < Fqdn >]
[-IgnoreDefaultScope < SwitchParameter >] [-OrganizationalUnit < OrganizationalUnit
IdParameter >] [-ReadFromDomainController < SwitchParameter >] [-RecipientPrev
iewFilter < String >] [-RecipientType < RecipientType[] >] [-RecipientTypeDetails
 < RecipientTypeDetails[] >] [-ResultSize < Unlimited >] [-SortBy < String >]
[< CommonParameters >]

Get-Recipient [-Anr < String >] [-Credential < PSCredential >] [-DomainController
 < Fqdn >] [-IgnoreDefaultScope < SwitchParameter >] [-OrganizationalUnit
 < OrganizationalUnitIdParameter >] [-ReadFromDomainController < SwitchParameter >]
[-RecipientType < RecipientType[] >] [-RecipientTypeDetails < RecipientTypeDetails[] >]
[-ResultSize < Unlimited >] [-SortBy < String >] [< CommonParameters >]

 This cmdlet does not have any required parameters and running it with no parameters returns a
complete list of all Recipients in the organization. It, however, requires the logged - on user to be a
member of the Exchange Recipient Administrator Group and belong to the local Administrators group
on the computer.

c04.indd 87c04.indd 87 12/17/07 5:27:19 PM12/17/07 5:27:19 PM

Part I: PowerShell for Exchange Fundamentals

88

 Some key parameters to note include:

❑ RecipientType < RecipientType[] > : Filters to specify the type of Recipient to return. At least
eight RecipientTypes can be specified, which are discussed later in the chapter.

❑ RecipientTypeDetails < RecipientTypeDetails[] > : Exchange Server 2007 further
distinguishes the Recipient types returned by this parameter. Recipient types are divided into
Recipient types and subtypes. For example, the type UserMailbox represents a user account
in Active Directory with an associated mailbox. Because there are several mailbox types,
each mailbox type is identified by the RecipientTypeDetails parameter. At least 14
RecipientTypeDetails are available to distinguish between Recipient types.

❑ Anr < String > : Specifies a string on which to perform an ambiguous name resolution (ANR)
search. By default it searches for CommonName, DisplayName, FirstName, LastName, and
Alias.

❑ Credential < PSCredential > : Prompts the user for a password to access Active Directory.

 ❑ Filter < String > : This is an important parameter. Sometimes you may want to return just a
subset of Recipients or Recipients matching a specified criterion. Use the Filter parameter to
specify one or more attributes used to restrict the Recipients that are returned by the query. It
cannot be used in conjunction with the Anr parameter.

❑ Identity < RecipientIdParameter > : Identifies the Recipient and can use any of the follow-
ing values: GUID, Domain\Account, UserPrincipalName (UPN), LegacyExchangeDN, SMTP
Address, Name, or Alias.

❑ ResultSize < Unlimited > : The ResultSize parameter specifies the maximum number of
results to return. If you want to return all Recipients that match the filter, use “unlimited” for
the value of this parameter. The default value is 1,000.

 Get - Mailbox
 This cmdlet is used to view mailbox objects and their attributes on all Exchange Servers in the
organization when no parameter is specified. No parameter is required. The list of parameters is
shown here. For a detailed list run the following in the Exchange Management Shell: get-help
Get-Mailbox -detailed .

Get-Mailbox [-Identity < MailboxIdParameter >] [-Credential < PSCredential >]
[-DomainController < Fqdn >] [-OrganizationalUnit < OrganizationalUnitIdParameter >]
[ReadFromDomainController < SwitchParameter >]
[-RecipientTypeDetails < RecipientTypeDetails[] >] [-ResultSize < Unlimited >] [-SortBy
 < String >] [< CommonParameters >]
Get-Mailbox [-Credential < PSCredential >] [-DomainController < Fqdn >]
[-IgnoreDefaultScope < SwitchParameter >] [-OrganizationalUnit
 < OrganizationalUnitIdParameter >] [-ReadFromDomainController < SwitchParameter >]
[-RecipientTypeDetails < RecipientTypeDetails[] >] [-ResultSize < Unlimited >] [-Server
 < ServerIdParameter >] [-SortBy < String >] [< CommonParameters >]

Get-Mailbox [-Credential < PSCredential >] [-Database < DatabaseIdParameter >]
[-DomainController < Fqdn >] [-IgnoreDefaultScope < SwitchParameter >]
[-OrganizationalUnit < OrganizationalUnitIdParameter >] [-ReadFromDomainController
 < SwitchParameter >] [-RecipientTypeDetails < RecipientTypeDetails[] >] [-ResultSize
 < Unlimited >] [-SortBy < String >] [< CommonParameters >]

c04.indd 88c04.indd 88 12/17/07 5:27:20 PM12/17/07 5:27:20 PM

Chapter 4: Working with User and Group Objects

89

 To accurately evaluate the current storage quota status using the Get-Mailbox cmdlet, it is necessary
to look at the UseDatabaseQuotaDefaults property in addition to the ProhibitSendQuota ,
 ProhibitSendReceiveQuota , and IssueWarningQuota properties. A value of True for the
 UseDatabaseQuotaDefaults property means that the per - mailbox settings are ignored and the
mailbox database limits are used. If this property is set to True and the ProhibitSendQuota ,
 ProhibitSendReceiveQuota , and IssueWarningQuota properties are set to unlimited, the mailbox
does not have unlimited size. Instead, you must reference the mailbox database storage limits to see
what the limits for the mailbox are. A value of False for the UseDatabaseQuotaDefaults property
means that the per - mailbox settings are used.

 Some key parameters to note include:

❑ RecipientTypeDetails < RecipientTypeDetails[] > : Exchange Server 2007 further
distinguishes the Recipient types returned by this parameter. Recipient types are divided into
Recipient types and subtypes. For example, the type UserMailbox represents a user account
in Active Directory with an associated mailbox. Because there are several mailbox types,
each mailbox type is identified by the RecipientTypeDetails parameter. There are six
RecipientTypeDetails that can be specified with this cmdlet.

❑ Server < ServerIdParameter > : The Server parameter specifies an individual server and is
used to limit the results returned. Only mailboxes on the specified server are returned. The
CommonName of the server can be used.

❑ Database < DatabaseIdParameter > : As with the Server parameter, the Database parameter
specifies the database from which to get the mailbox. The following values can be specified:
GUID of the database, Database name, Server name\database name, Server name\storage
group\database name.

❑ Credential < PSCredential > : If specified the user is prompted for a password to access
Active Directory.

❑ Filter < String > : This is an important parameter. Sometimes you may want to return just a
subset of Recipients or Recipients matching a specified criterion. Use the Filter parameter to
specify one or more attributes used to restrict the Recipients that are returned by the query.
It cannot be used in conjunction with the Database parameter.

❑ Identity < MailboxIdParameter > : The Identity parameter identifies the mailbox and
can use any of the following values: GUID, Domain\Account, Distinguished Name (DN),
UserPrincipalName (UPN), LegacyExchangeDN, SMTP Address, Name, or Alias.

❑ SortBy < String > : The SortBy parameter specifies the attribute by which to sort the results.
The results will be sorted in ascending order specifying one of the following attributes: Alias,
Display name or Name,

 Get - MailContact
 This cmdlet returns the list of mail contacts and their attributes in Active Directory. The list of parameters
is shown here. For a detailed list run the following in the Exchange Management Shell: get-help
Get-MailContact -detailed .

c04.indd 89c04.indd 89 12/17/07 5:27:20 PM12/17/07 5:27:20 PM

Part I: PowerShell for Exchange Fundamentals

90

Get-MailContact [-Identity < MailContactIdParameter >] [-Credential < PSCredential >]
[-DomainController < Fqdn >] [-OrganizationalUnit < OrganizationalUnitIdParameter >]
[-ReadFromDomainController < SwitchParameter >] [-RecipientTypeDetails
 < RecipientTypeDetails[] >] [-ResultSize < Unlimited >] [-SortBy < String >]
[< CommonParameters >]
Get-MailContact [-Credential < PSCredential >] [-DomainController < Fqdn >] [-Filter
 < String >] [-IgnoreDefaultScope < SwitchParameter >] [-OrganizationalUnit
 < OrganizationalUnitIdParameter >] [-ReadFromDomainController < SwitchParameter >]
[-RecipientTypeDetails < RecipientTypeDetails[] >] [-ResultSize < Unlimited >] [-SortBy
 < String >] [< CommonParameters >]

 Some key parameters to note include:

❑ RecipientTypeDetails < RecipientTypeDetails[] > : Exchange Server 2007 further
distinguishes the Recipient types returned by this parameter. Recipient types are divided into
Recipient types and subtypes. For example, the type UserMailbox represents a user account
in Active Directory with an associated mailbox. Because there are several mailbox types,
each mailbox type is identified by the RecipientTypeDetails parameter. Only two
RecipientTypeDetails are available to distinguish between contact types.

❑ Credential < PSCredential > : If specified the user is prompted for a password to access
Active Directory.

❑ Filter < String > : This is an important parameter. Sometimes you may want to return just a
subset of Recipients or Recipients matching a specified criterion. Use the Filter parameter to
specify one or more attributes used to restrict the Recipients that are returned by the query. It
cannot be used in conjunction with the Anr parameter.

❑ Identity < MailContactIdParameter > : The Identity parameter identifies the contact and
can use any of the following values: ADObjectID, GUID, DistinguishedName, UserPrincipal-
Name (UPN), LegacyDN, E - mail Address, or Alias.

 Get - Group
 This cmdlet queries for existing groups in Active Directory. The list of parameters is shown here. For a
detailed list run the following in the Exchange Management Shell: get-help Get-Group -detailed .

Get-Group [-Identity < GroupIdParameter >] [-Credential < PSCredential >]
[-DomainController < Fqdn >] [-OrganizationalUnit < OrganizationalUnitIdParameter >]
[-ReadFromDomainController < SwitchParameter >] [-RecipientTypeDetails
 < RecipientTypeDetails[] >] [-ResultSize < Unlimited >] [-SortBy < String >]
[< CommonParameters >]
Get-Group [-Credential < PSCredential >] [-DomainController < Fqdn >] [-Filter
 < String >] [-OrganizationalUnit < OrganizationalUnitIdParameter >]
[-ReadFromDomainController < SwitchParameter >] [-RecipientTypeDetails
 < RecipientTypeDetails [] >] [-ResultSize < Unlimited >] [-SortBy < String >]
[< CommonParameters >]
Get-Group [-Anr < String >] [-Credential < PSCredential >] [-DomainController < Fqdn >]
[-OrganizationalUnit < OrganizationalUnitIdParameter >] [-ReadFromDomainController
 < SwitchParameter >] [-RecipientTypeDetails < RecipientTypeDetails[] >]
[-ResultSize < Unlimited >] [-SortBy < String >] [< CommonParameters >]

c04.indd 90c04.indd 90 12/17/07 5:27:21 PM12/17/07 5:27:21 PM

Chapter 4: Working with User and Group Objects

91

 Some key parameters to note include:

❑ RecipientTypeDetails < RecipientTypeDetails[] > : Exchange Server 2007 further
distinguishes the Recipient types returned by this parameter. Recipient types are divided into
Recipient types and subtypes. Five RecipientTypeDetails can be specified with this cmdlet.
These include MailEnabledContact , MailEnabledForestContact , NonuniversalGroup ,
 UniversalDistributionGroup , and UniversalSecurityGroup .

❑ ReadFromDomainController < SwitchParameter > : The ReadFromDomainController
parameter specifies that the user information is read from a domain controller in the user ’ s
domain. If you set the Recipient scope to include all Recipients in the forest, and if you do not
use this parameter, it is possible that the user information is read from a global catalog with
outdated information. If you use this parameter, multiple reads might be necessary to get the
information. By default, the Recipient scope is set to the domain that hosts your Exchange
servers.

❑ DomainController < fqdn > : This parameter specifies the fqdn of the domain controller you
query against to retrieve the data from Active Directory.

❑ Credential < PSCredential > : The Credential parameter specifies the account to use to read
the Active Directory Service. This is especially useful when specifying the global catalog. The
password should be requested in a secure manner.

❑ Identity < MailboxIdParameter > : The Identity parameter identifies the mailbox and can
use any of the following values: GUID, Domain\Account, Distinguished Name (DN), UserPrin-
cipalName (UPN), LegacyDN, or Alias.

 Get - DistributionGroup
 This cmdlet queries for existing Distribution Groups in Active Directory. These groups could be either
Distribution Groups used to send mails to multiple Recipients that match a specified filter or Security
Groups used to assign permissions to resources for multiple users that match a specified filter. The list of
parameters is shown here. For a detailed list run the following in the Exchange Management Shell:
get-help Get-DistributionGroup -detailed .

Get-DistributionGroup [-Identity < DistributionGroupIdParameter >] [-Credential
 < PSCredential >] [-DomainController < Fqdn >] [-ManagedBy
 < GeneralRecipientIdParameter >] [-OrganizationalUnit
 < OrganizationalUnitIdParameter >] [-ReadFromDomainController < SwitchParameter >]
[-RecipientTypeDetails < RecipientTypeDetails[] >] [-ResultSize < Unlimited >] [-SortBy
 < String >] [< CommonParameters >]
Get-DistributionGroup [-Credential < PSCredential >] [-DomainController < Fqdn >]
[-Filter < String >] [-ManagedBy < GeneralRecipientIdParameter >] [-OrganizationalUnit
 < OrganizationalUnitIdParameter >] [-ReadFromDomainController < SwitchParameter >]
[-RecipientTypeDetails < RecipientTypeDetails[] >] [-ResultSize < Unlimited >] [-SortBy
 < String >] [< CommonParameters >]
Get-DistributionGroup [-Anr < String >] [-Credential < PSCredential >]

(continued)

c04.indd 91c04.indd 91 12/17/07 5:27:21 PM12/17/07 5:27:21 PM

Part I: PowerShell for Exchange Fundamentals

92

[-DomainController < Fqdn >] [-ManagedBy < GeneralRecipientIdParameter >]
[-OrganizationalUnit < OrganizationalUnitIdParameter >] [-ReadFromDomainController
 < SwitchParameter >] [-RecipientTypeDetails < RecipientTypeDetails[] >] [-ResultSize
 < Unlimited >] [-SortBy < String >] [< CommonParameters >]

 Some key parameters to note include:

❑ RecipientTypeDetails < RecipientTypeDetails[] > : Exchange Server 2007 further
distinguishes the group types returned by this parameter. Three RecipientTypeDetails can
be specified with this cmdlet. These include: MailEnabledNonuniversalGroup ,
MailEnabledUniversalDistributionGroup , and MailEnabledUniversalSecurityGroup .

❑ ReadFromDomainController < SwitchParameter > : The ReadFromDomainController
 parameter specifies that the user information is read from a domain controller in the user ’ s
 domain. If you set the Recipient scope to include all Recipients in the forest, and if you do not
use this parameter, it is possible that the user information is read from a global catalog with out-
dated information. If you use this parameter, multiple reads might be necessary to get the infor-
mation. By default, the Recipient scope is set to the domain that hosts your Exchange servers.

❑ DomainController < fqdn > : This parameter specifies the fqdn of the domain controller you
query against to retrieve the data from Active Directory.

❑ Credential < PSCredential > : The Credential parameter specifies the account to use to read
the Active Directory Service. This is especially useful when specifying the global catalog. The
password should be requested in a secure manner.

❑ Filter < String > : The Filter parameter indicates the OPath filter used to filter Recipients.
We discuss OPath further later in the chapter.

❑ Identity < MailboxIdParameter > : The Identity parameter identifies the mailbox and can
use any of the following values: GUID, Domain\Account, Distinguished Name (DN), UserPrin-
cipalName (UPN), LegacyDN, or Alias.

 Get - DynamicDistributionGroup
 This cmdlet queries for existing Dynamic Distribution Groups in Active Directory and retrieves their
settings. One key point to note with this cmdlet is that it does not have the RecipientTypeDetails
parameter. The list of parameters is shown here. For a detailed list run the following in the Exchange
Management Shell: get-help Get-DynamicDistributionGroup -detailed .

Get-DynamicDistributionGroup [-Identity < DynamicGroupIdParameter >] [-Credential
 < PSCredential >] [-DomainController < Fqdn >] [-IgnoreDefaultScope < SwitchParameter >]
[-ManagedBy < GeneralRecipientIdParameter >] [-OrganizationalUnit
 < OrganizationalUnitIdParameter >] [-ReadFromDomainController < SwitchParameter >]
[-ResultSize < Unlimited >] [-SortBy < String >] [< CommonParameters >]

Get-DynamicDistributionGroup [-Credential < PSCredential >] [-DomainController
 < Fqdn >] [-Filter < String >] [-IgnoreDefaultScope < SwitchParameter >] [-ManagedBy

(continued)

c04.indd 92c04.indd 92 12/17/07 5:27:22 PM12/17/07 5:27:22 PM

Chapter 4: Working with User and Group Objects

93

 < GeneralRecipientIdParameter >] [-OrganizationalUnit
 < OrganizationalUnitIdParameter >] [-ReadFromDomainController < SwitchParameter >]
[-ResultSize < Unlimited >] [-SortBy < String >] [< CommonParameters >]

Get-DynamicDistributionGroup [-Anr < String >] [-Credential < PSCredential >]
[-DomainController < Fqdn >] [-IgnoreDefaultScope < SwitchParameter >] [-ManagedBy
 < GeneralRecipientIdParameter >] [-OrganizationalUnit
 < OrganizationalUnitIdParameter >] [-ReadFromDomainController < SwitchParameter >]
[-ResultSize < Unlimited >] [-SortBy < String >] [< CommonParameters >]

 Some key parameters to note include:

❑ ReadFromDomainController < SwitchParameter > : The ReadFromDomainController
parameter specifies that the user information is read from a domain controller in the user ’ s
domain. If you set the Recipient scope to include all Recipients in the forest, and if you do not
use this parameter, it is possible that the user information is read from a global catalog with
outdated information. If you use this parameter, multiple reads might be necessary to get the
information. By default, the Recipient scope is set to the domain that hosts your Exchange
servers.

❑ DomainController < fqdn > : This parameter specifies the fqdn of the domain controller you
query against to retrieve the data from Active Directory.

❑ -IgnoreDefaultScope < SwitchParameter > : This parameter instructs the command to
ignore the default Recipient scope setting for the Exchange Management Shell and use the entire
forest as the scope. This allows the command to access Active Directory objects that are not
currently in the default scope. Using the IgnoreDefaultScope parameter introduces the
following restrictions:

❑ You cannot use the DomainController parameter. The command uses an appropriate
global catalog server automatically.

❑ You can only use the DN for the Identity parameter. Other forms of identification,
such as alias or GUID, are not accepted. You cannot use the OrganizationalUnit and
 Identity parameters together. You cannot use the Credential parameter.

❑ Filter < String > : The Filter parameter indicates the OPath filter used to filter Recipients.
 OPath is discussed in more detail later in the chapter.

❑ Identity < MailboxIdParameter > : The Identity parameter identifies the Dynamic
Distribution Group and can use any of the following values: GUID, Domain\Account,
Distinguished Name (DN), UserPrincipalName (UPN), LegacyDN, Alias, or primary SMTP
address.

 As mentioned earlier, Exchange Server 2007 incorporates the management of User and Group
object types in the Management Console. These objects can be found in the Recipient Configuration

c04.indd 93c04.indd 93 12/17/07 5:27:22 PM12/17/07 5:27:22 PM

Part I: PowerShell for Exchange Fundamentals

94

Figure 4-3

node of the Exchange Management Console and fall under one of the following nodes and as shown in
Figure 4 - 3 :

❑ Mailbox

❑ Distribution Group

❑ Mail Contact

❑ Disconnected Mailbox

 The same information is available by running the Exchange Management Shell command. Using the
 Get-Recipient cmdlet in a mixed Exchange Server 2000/2003/2007 environment will display all
Recipients including system mailboxes and public folders. In Figure 4 - 4 the Format-Table cmdlet is
used to present the output in a viewable friendly format based on the Recipient name, Recipient type,
and Recipient type details.

c04.indd 94c04.indd 94 12/17/07 5:27:22 PM12/17/07 5:27:22 PM

Chapter 4: Working with User and Group Objects

95

Figure 4-4

 Using the filter switch and excluding public folders, all Recipient types created in a mixed Exchange
environment can be displayed as in Figure 4 - 5 .

Figure 4-5

 Some Recipient types, though, such as legacy mailbox and mail - enabled nonuniversal groups are
unavailable in a native Exchange Server 2007 environment. Figure 4 - 6 re - runs the same command
shown in Figure 4 - 4 , this time in a native Exchange Server 2007 environment. Notice that the
RecipientTypeDetails column has no legacy mailbox or mail - enabled nonuniversal group.

c04.indd 95c04.indd 95 12/17/07 5:27:24 PM12/17/07 5:27:24 PM

Part I: PowerShell for Exchange Fundamentals

96

 Exchange Server 2007 Recipient Objects
 Exchange Server 2007 contains Recipients that are either mailbox - enabled or mail - enabled.

 A user mailbox is a mailbox - enabled Recipient object with an Exchange Server 2007 mailbox. This
mailbox houses several types of data such as email messages, contacts, calendar items, tasks, and other
documents. This Recipient object is associated with a single Enabled Active Directory Services user object.
A user mailbox can be converted to a shared mailbox or resource mailbox and vice versa. Mailbox type
conversion can only be accomplished through the Exchange Management Shell. To perform this
procedure, the Active Directory User account must be granted the Exchange Recipient Administrator role.

 Using the Get-Recipient or Get-Mailbox cmdlets returns user mailboxes in the organization. This
object has a Recipient type of UserMailbox .

 In Figure 4 - 7 , notice that a shared mailbox, resource mailbox, or even a linked user mailbox all have a
Recipient type of UserMailbox .

Figure 4-6

Figure 4-7

c04.indd 96c04.indd 96 12/17/07 5:27:25 PM12/17/07 5:27:25 PM

Chapter 4: Working with User and Group Objects

97

 Although all the Recipients have a RecipientType of UserMailbox , only regular mailbox - enabled
users created on Exchange Server 2007 and whose Active Directory Services account is enabled will have
a RecipientTypeDetails property set to $True for the Recipient type UserMailbox .

 Figure 4 - 8 has the cmdlet run again to display only Recipients with Recipient type of UserMailbox ,
however we define a filter to further distinguish these Recipients with similar Recipient types. Notice
that the recipienttypedetail property is set to $True only for ExchUser , which is a regular user
mailbox created on Exchange Server 2007.

Figure 4-8

 A linked mailbox object is also a UserMailbox object; however, this mailbox type is accessed by a user in
a separate trusted forest. A forest trust must exist before a LinkedMailbox can be created. Organizations
that deploy Exchange in a dedicated resource forest can allow users in one or more user account trusted
forests to access mailboxes on Exchange. Even if a user in a separate forest is used to access the
 LinkedMailbox , a disabled Windows user account in the Exchange resource forest must be associated
with the Exchange mailbox. Although the LinkedMailbox shows up as a Recipient type of
 UserMailbox , it can be distinguished by the RecipientTypeDetails as shown in Figure 4 - 9 .

Figure 4-9

 To convert a linked mailbox to a user mailbox simply disconnect the mailbox object from the user
object in the external forest by using the Disable-Mailbox cmdlet. Next reconnect it to a user object
existing in the Exchange forest using the Connect-Mailbox cmdlet:

Disable-Mailbox -Identity ExchLink
Connect-Mailbox -Identity ExchLink -Database “Mailbox Database” -User ExchUser

c04.indd 97c04.indd 97 12/17/07 5:27:25 PM12/17/07 5:27:25 PM

Part I: PowerShell for Exchange Fundamentals

98

 A legacy mailbox is a user mailbox and shares most of the features of user mailboxes however they
reside on Exchange 2000 or Exchange 2003 servers. One noticeable feature unavailable with legacy
mailboxes is that they cannot be Unified Message (UM) enabled. This mailbox is distinguished from
other user mailboxes by its RecipientTypeDetails as shown in Figure 4 - 10 .

Figure 4-10

Figure 4-11

 Room mailboxes, also known as conference room mailboxes, are resource mailboxes used for scheduling
and assigned to location - specific resources such as meeting rooms, auditoriums, training rooms, and
conference rooms. Upon creation, the associated user account is disabled. Its RecipientType is
 UserMailbox , however it is distinguished by its RecipientTypeDetails property. (See Figure 4 - 11 .)

 The equipment mailbox is also a resource mailbox. It is used for scheduling and assigning
non - location - specific resources, which could include printers, projectors, TV, computers, and company
cars and trucks. A disabled user account is likewise associated with this mailbox type and it is
distinguished by its RecipientTypeDetails property of EquipmentMailbox . (See Figure 4 - 12 .)

Figure 4-12

c04.indd 98c04.indd 98 12/17/07 5:27:26 PM12/17/07 5:27:26 PM

Chapter 4: Working with User and Group Objects

99

 As the name implies, shared mailboxes are user mailboxes shared by multiple user accounts. A disabled
Active Directory user account must be associated with a shared mailbox. After it is created other Active
Directory user accounts can be granted logon rights to the mailbox. In Exchange Server 2000 and
Exchange Server 2003, shared mailboxes were used to represent resource mailboxes. When an
organization migrates to Exchange Server 2007, these mailboxes will become Exchange Server 2007
shared mailboxes and can be converted to Exchange Server 2007 resource mailboxes. A shared mailbox
can also be converted to a user mailbox and vice versa. Although shared mailboxes are available in
Exchange Server 2003, use of resource mailboxes is recommended rather than shared mailboxes. Note
that a shared mailbox is only visible from the Exchange Management Shell and is not shown in the
Exchange Management Console. (See Figure 4 - 13 .)

Figure 4-13

 You can convert a shared mailbox to a resource mailbox by using the Set-Mailbox cmdlet.

 Next use the Get-Recipient cmdlet to view the change. In Figure 4 - 14 the output is filtered to return
only Recipient types of RoomMailbox existing in the organization and SharedMbx , which was
previously a shared mailbox but is now a room mailbox.

Figure 4-14

 Mail - enabled or non - mailbox - enabled Recipients in Exchange Server 2007 include the mail contact, mail
forest user, and mail user.

c04.indd 99c04.indd 99 12/17/07 5:27:26 PM12/17/07 5:27:26 PM

Part I: PowerShell for Exchange Fundamentals

100

 A mail contact is a non - mailbox - enabled Exchange Server 2007 Recipient. It is an Active Directory
Services contact that is used to contain information about people that exist outside of the Exchange
organization. Mail contacts can be part of distribution or address lists including the Global Address List
(GAL). They are used primarily for mail routing and these contacts do not have access to any internal
resources in the Exchange organization. For example, during a migration phase, an Exchange
organization may coexist with a Lotus Notes organization and may choose to synchronize all the Lotus
Notes users to the Active Directory as mail contacts. After migration, all Lotus Notes users would be
converted to mailbox - enabled Active Directory Services users. Although the mail contact has an SMTP
address associated with the local Exchange organization, when a message is addressed to the mail
contact, the ExternalEmailAddress or PrimarySMTPAddress properties are used to route and deliver
the mail. These properties represent the information about the people existing outside the Exchange
organization.

 In Figure 4 - 15 , the mail contact will have the EmailAddresses property populated with both SMTP
proxy addresses of the Exchange organization and external SMTP address of [smtp:ADMContact@
ExchangeExchange.local; ADMContact@bogusdomain.net] ; however, its PrimarySMTPAddress ,
which is used for mail routing, is ADMContact@bogusdomain.net .

 You can use either the Get-Recipient or Get-MailContact cmdlets to return a list of mail contacts in
the Active Directory forest.

Figure 4-15

 The mail forest contact is typically created by Microsoft Identity Integration Server (MIIS)
synchronization and represents Recipients existing in an external forest or organization.

 The mail user is identical to the mail contact in the sense that it is used to contain information about
people outside the Exchange organization and could be part of a Distribution Group or address list. The
mail user, however, has logon credentials in the Active Directory forest and can access resources like any
other Active Directory user in the forest. You can use either the Get-Recipient or Get-MailUser
cmdlets to return a list of mail users in the organization. (See Figure 4 - 16 .)

c04.indd 100c04.indd 100 12/17/07 5:27:27 PM12/17/07 5:27:27 PM

Chapter 4: Working with User and Group Objects

101

 Mail - enabling a public folder extends the basic functionality of allowing users to post messages in a
central repository. Users can send or receive email messages to a mail - enabled public folder. The
Exchange mail - enabled public folder has an Active Directory object containing Exchange mail properties
such as primarysmtpaddress . You can use the Get-MailPublicFolder cmdlet to view mail - enabled
public folders. For more information on public folders, see Chapter 5 .

 This chapter would not be complete without mentioning the Microsoft Exchange Recipient. This is not a
mail - enabled or mailbox - enabled Recipient, rather it is a special Recipient used as the sender of system -
 generated messages. There is only one Microsoft Exchange Recipient in an Exchange forest. In Exchange
Server 2003 this was represented by the Post Master mailbox and messages thus generated were from the
System Administrator. The Microsoft Exchange Recipient can send the following types of system
messages: Delivery Status Notifications (DSNs), Message Journal Reports, Agent - generated Messages,
and Quota limit messages. Hence non - deliverable messages, for example, are no longer from the System
Administrator but from Microsoft Exchange. This applies only to system - generated messages sent
within the Exchange organization. For system - generated messages sent to Recipients outside the
Exchange organization, the address specified in the ExternalPostmasterAddress property of the
 Get-TransportServer cmdlet is used as the “ from ” address for the Microsoft Exchange Recipient. This
address can be configured using the Set-TransportServer cmdlet. Because the Microsoft Exchange
Recipient is not your typical Exchange Recipient, the usual Recipient cmdlets cannot be used to view or
modify it. You can use the Set-OrganizationConfig cmdlet to configure an additional mail Recipient
such as the administrator to receive system - generated messages; to prevent the default email address
policy from applying to the Microsoft Exchange Recipient; and to configure email addresses for this
Recipient.

 The Microsoft Exchange Recipient is exempt from any message limits configured in the Exchange
organization. For Exchange organizations in cross - forest topologies, this may present a problem
because messages from the Microsoft Exchange Recipient in one forest may not be recognized
as coming from the Microsoft Exchange Recipient and thus could be subject to message limit
restrictions. Microsoft Exchange Server 2007 will determine that a message is sent by the Microsoft
Exchange Recipient by comparing the sender ’ s email address to the list of email addresses specified
in the MicrosoftExchangeRecipientEmailAddresses of the Get-OrganizationalConfig
cmdlet. To overcome this hurdle, the Microsoft Exchange Recipient of each forest can be configured
with an additional email address that matches the primary email address of the Microsoft
Exchange Recipient in the other forest. Hence, when a comparison is made of the
 MicrosoftExchangeRecipientEmailAddresses parameter, a match would be detected thus
allowing the system - generated message to bypass message restrictions. This configuration, however,
has a drawback if the Microsoft Exchange Recipient in either or both forests is configured with a
reply address defined by the MicrosoftExchangeRecipientReplyRecipient parameter . By default
this parameter is set to $null .

Figure 4-16

c04.indd 101c04.indd 101 12/17/07 5:27:27 PM12/17/07 5:27:27 PM

Part I: PowerShell for Exchange Fundamentals

102

 Exchange Server 2007 Group Objects
 As in previous versions of Exchange Server, Distribution Groups are used to enable bulk distribution of
email to multiple Recipients both within and outside of an Exchange organization. In Windows Server
2003 and earlier, Active Directory Services Groups could be either Distribution Groups used only for
email distribution or Security Groups used for granting permission to resources in the forest. They could
be scoped as local, global, or universal groups. In Exchange Server 2007, however, any mail - enabled
Active Directory Group object is a Distribution Group regardless of its scope and whether it is a
Distribution or Security Group. Distribution Groups available and supported in Exchange Server 2007
include the types discussed in the following sections.

 Mail - Enabled Universal Distribution Groups
 These are mail - enabled Active Directory Universal Distribution Group objects and are used only
for email distribution to multiple Recipients. They cannot be used to grant access to resources in
either Exchange or Active Directory. Any Exchange Server 2007 Recipient object mentioned in the
preceding section can be a member of these groups. Using the Get-Recipient , Get-Group , or Get-
DistributionGroup cmdlets with a RecipientTypeDetails of MailUniversalDistributionGroup
returns all Distribution Groups in the Exchange organization that are mail - enabled Distribution Groups
as shown in Figure 4 - 17 .

Figure 4-17

 Mail - Enabled Universal Security Groups
 These are mail - enabled Active Directory Universal Security Group objects and are used only for email
distribution to multiple Recipients and to grant permissions to resources in the Active Directory forest.
Any Exchange Server 2007 Recipient object mentioned in the preceding section can be a member of these
groups. Using the Get-Recipient , Get-Group , or Get-DistributionGroup cmdlets with a
 RecipientTypeDetails of MailUniversalSecurityGroup returns all Security Groups in the
Exchange organization that are mail - enabled. (See Figure 4 - 18 .)

c04.indd 102c04.indd 102 12/17/07 5:27:28 PM12/17/07 5:27:28 PM

Chapter 4: Working with User and Group Objects

103

 Mail - Enabled Nonuniversal Groups
 These are Active Directory local or global Security or Distribution Group objects. Use of these groups for
email distribution is greatly de - emphasized in Exchange Server 2007 because unpredictable group
membership expansion could result. Hence, these groups cannot be created from the Exchange
Management Console. Organizations migrating to or coexisting with Exchange Server 2007 may have
these groups already in Active Directory. Using the Set-Group cmdlet, these groups can be converted to
either mail - enabled universal Distribution or Security Groups. In a native Exchange Server 2007
environment, you cannot create a mail - enabled nonuniversal group using the Active Directory Users and
Computers as is the case in an Exchange Server 2000/2003 or a mixed Exchange Server 2000/2003/2007
environment. Figure 4 - 19 shows mail nonuniversal groups in the forest.

Figure 4-18

Figure 4-19

 Dynamic Distribution Groups
 In Exchange Server 2000/2003, this group type was commonly referred to as Query Based Distribution
Groups (QDG). Used to ease the administrator ’ s burden of manually adding Recipients to
Distribution Groups, a Dynamic Distribution Group ’ s membership is based upon a preset Recipient
filter and calculated each time a message is sent to this group. Group membership can include all

c04.indd 103c04.indd 103 12/17/07 5:27:28 PM12/17/07 5:27:28 PM

Part I: PowerShell for Exchange Fundamentals

104

Recipient types including other mail - enabled groups. In Exchange Server 2003, Query Based Distribution
Groups accepted emails from all senders. This is, however, different in Exchange Server 2007 because
Dynamic Distribution Groups by default accept only emails from authenticated senders. This
configuration can be changed by modifying the message delivery restrictions on the Dynamic
Distribution Group. You can use the Get-Recipient and Get-DynamicDistributionGroup cmdlets
to display Dynamic Distribution Groups available in the Exchange organization. (See Figure 4 - 20 .)

Figure 4-20

 You would also notice that when an Exchange Server 2007 Dynamic Distribution Group is created, it
stores its RecipientFilter in an OPATH format, whereas in Exchange Server 2000/2003, the Query
Based Distribution Groups filter is stored in an LDAP format. The following blog by Bill Long provides
an available PowerShell script to convert LDAP filters to OPATH format: http://msexchangeteam.
com/archive/2007/03/12/436983.aspx .

 Finally, Microsoft Exchange Server 2007 contains other group objects that are not mail - enabled, cannot be
viewed in the Microsoft Exchange Management Console, and thus cannot be viewed as email Recipients.
These are Active Directory Security Groups, discussed in the following list, and are used solely for the
administration of Exchange and a new Organizational Unit called Microsoft Exchange Security Groups
is created during set up of Exchange to house these Security Groups.

❑ Exchange2003Interop Group: This is an Active Directory Services Universal Security Group
used to grant appropriate permissions when an Exchange Server 2000/2003 organization
coexists with an Exchange Server 2007 organization. Group membership must be manually
configured. It is created during Exchange setup or after the setup /PrepareAD switch is run.

❑ Exchange Servers Group: This is an Active Directory Services Universal Security Group. It is
created during Exchange setup or after the setup /PrepareAD switch is run. This group contains
all the Exchange Server 2007 computers in the organization and should never be deleted. The
Exchange Install Domain Servers Global Group is also a member of this Universal Security
Group.

❑ Exchange View - Only Administrators Group: This is an Active Directory Services Universal
Security Group. Users in this group will have permission to read all Exchange configurations
and should never be deleted. Users in this group are also added to the Exchange View - Only

c04.indd 104c04.indd 104 12/17/07 5:27:28 PM12/17/07 5:27:28 PM

Chapter 4: Working with User and Group Objects

105

Administrators role and have read - only access to the Exchange organization hierarchy in the
Configuration container in Active Directory. They also have read access to any domain
containers having Exchange Recipients. It is created during Exchange setup or after the setup
/PrepareAD switch is run.

❑ Exchange Recipient Administrators Group: This is an Active Directory Services Universal
Security Group. Users in this group can manage Exchange user attributes in Active Directory
and perform select mailbox operations. This group should never be deleted. Users added to this
group also become members of the Exchange Recipient Administrator role with permissions to
modify any Exchange property on a user, contact, group, Dynamic Distribution Group, or
Exchange public folder object. They are members of the Exchange view - only administrator
group, have read access to all Domain Users Containers and write access to all Exchange attri-
butes in the Domain Users Container in Active Directory. It is created during Exchange setup or
after the setup /PrepareAD switch is run.

❑ Exchange Organization Administrators Group: This is an Active Directory Services Universal
Security Group. Users in this group have permission to read and modify all Exchange
configurations. This group should never be deleted. Users added to this group also become
members of the Exchange Organization Administrator role and as such become owners of
the Exchange organization in the Configuration container in Active Directory. They also have
read access to all domain user containers and write access to all Exchange - specific attributes in
all domain containers in Active Directory. It is created during Exchange setup or after the setup
/PrepareAD switch is run.

❑ Exchange Install Domain Servers Group: This is an Active Directory Services Global Security
Group created in the Microsoft Exchange System Objects container. When installing Exchange
Server 2007 into domain other than the root domain, the setup /PrepareDomain switch is used
to prepare the child domain. Upon completion, the Exchange Install Domain Servers global
group is created. The creation of this group allows you to avoid installation errors if group
memberships have not replicated to the child domain. This global group is a member of the
Exchange Servers Universal Security Group.

 Creating and Modifying User Objects
 After introducing the Recipient objects available in Exchange Server 2007, this section describes how
to create and modify these objects. The following list presents cmdlets that can be used to create and
modify user objects. We explain some key parameters of some of these cmdlets.

❑ New-Mailbox

❑ Set-Mailbox

❑ Connect-Mailbox

❑ Move-Mailbox

❑ Enable-Mailbox

❑ Disable-Mailbox

c04.indd 105c04.indd 105 12/17/07 5:27:29 PM12/17/07 5:27:29 PM

Part I: PowerShell for Exchange Fundamentals

106

❑ Remove-Mailbox

❑ New-Contact

❑ New-MailContact

❑ Set-CASMailbox

❑ Export-Mailbox

❑ Import-Mailbox

 New - Mailbox
 This cmdlet creates a new user object in Active Directory and mailbox - enables the user. There are several
switch parameters associated with this cmdlet as well as required parameters. The list of parameters is
shown next. For a detailed list run the following in the Exchange Management Shell: get-help
New-Mailbox -detailed .

 Some key parameters to note include:

❑ Database < DatabaseIdParameter > : This is a required parameter and specifies the database
to host the new mailbox. It can take several formats such as GUID of database, database name,
or server name\database name.

❑ Equipment < SwitchParameter > : This switch parameter indicates that a resource mailbox of
type Equipment is to be created. It is a required parameter if creating an equipment resource
mailbox.

❑ LinkedDomainController < String > : A required parameter when creating a linked mailbox.
It is used to specify the domain controller in the forest where the user account to be granted
access to the mailbox resides. It is used in conjunction with the LinkedMasterAccount
parameter.

❑ LinkedCredential < PSCredential > : This parameter specifies the credentials used to access
the domain controller referenced in the LinkedDomainController parameter.

❑ LinkedMasterAccount < UserIdParameter > : This parameter specifies the master account
from the external forest, which will be granted mailbox access to the linked mailbox. It is a
required parameter when creating linked mailboxes.

❑ Room < SwitchParameter > : As with the Equipment parameter, this is a switch parameter
that indicates that the type of resource mailbox to be created is a room mailbox. It is a required
parameter when creating this resource mailbox.

❑ Shared < SwitchParameter > : This switch parameter is required when creating a shared
mailbox. A detailed description of the shared mailbox is provided earlier in this chapter.

❑ ManagedFolderMailboxPolicy < MailboxPolicyIdParameter > : This parameter specifies
the managed folder mailbox policy to be applied to the new mailbox. If none is specified, the
default ManagedFolderMailboxPolicy applies. It is not a required parameter.

c04.indd 106c04.indd 106 12/17/07 5:27:29 PM12/17/07 5:27:29 PM

Chapter 4: Working with User and Group Objects

107

❑ ManagedFolderMailboxPolicyAllowed < SwitchParameter > : This parameter is used to
bypass the warning that messaging records management features are not supported for email
clients using versions of Microsoft Outlook earlier than Outlook 2007. It is not a required
parameter.

❑ ActiveSyncMailboxPolicy < MailboxPolicyIdParameter > : As with the
ManagedFolderMailboxPolicy parameter, this parameter is used to specify the
ActiveSyncMailboxPolicy to be applied to the mailbox. If none is specified, the default is used.

❑ Password < SecureString > : This parameter specifies the initial password and is required
when creating a user mailbox. It is, however, not required when creating a resource mailboxes
because the associated accounts are disabled.

 Set - Mailbox
 This cmdlet is used to modify the settings of an existing mailbox. It can be used for one mailbox at a
time. If you want to modify the settings of multiple mailboxes, you can pipeline the output of various
 Get cmdlets to this cmdlet to simultaneously modify their settings. The list of parameters is shown next.
For a detailed list run the following in the Exchange Management Shell: get-help Set-Mailbox
-detailed .

❑ Type < Regular | Room | Equipment | Shared > : Can be used to convert from one mailbox
type to another. Available options are Regular (User Mailbox), Room, Equipment, and Shared.

❑ AcceptMessagesOnlyFrom < RecipientIdParameter[] > : Applies restrictions to the mailbox
indicating which Recipients the mailbox will accept messages for.

❑ AcceptMessagesOnlyFromDLMembers < RecipientIdParameter[] > : Applies restrictions to
the mailbox indicating which distribution list members the mailbox will receive messages for.

❑ AntispamBypassEnabled < $true | $false > : Possible values are True or False . If set to
 True , anti - spam processing is skipped for the mailbox.

❑ ApplyMandatoryProperties < SwitchParameter > : If a mailbox is inadvertently created
using Exchange 2003 extensions to Active Directory, the mailbox type is tagged
legacymailbox . This switch parameter modifies the properties of the mailbox removing
the legacymailbox tag.

❑ DeliverToMailboxAndForward < $true | $false > : This parameter specifies whether
messages sent to the mailbox can be forwarded to another address.

❑ ForwardingAddress < RecipientIdParameter > : If the DeliverToMailboxAndForward
parameter is set to $True , this parameter specifies the forwarding address.

❑ EmailAddressPolicyEnabled < $true | $false > : This parameter indicates whether the
email address policy for this mailbox is enabled.

❑ ExternalOofOptions < InternalOnly | External > : Determines if out-of-office messages
can be sent to Recipients outside the Exchange organization.

c04.indd 107c04.indd 107 12/17/07 5:27:30 PM12/17/07 5:27:30 PM

Part I: PowerShell for Exchange Fundamentals

108

❑ LinkedDomainController < String > : A required parameter when creating a linked mailbox.
It is used to specify the domain controller in the forest where the user account to be granted
access to the mailbox resides. It is used in conjunction with the LinkedMasterAccount
parameter.

❑ LinkedCredential < PSCredential > : This parameter specifies the credentials used to access
the domain controller referenced in the LinkedDomainController parameter.

❑ LinkedMasterAccount < UserIdParameter > : This parameter specifies the master account
from the external forest that will be granted mailbox access to the linked mailbox. It is a required
parameter when creating linked mailboxes.

❑ ManagedFolderMailboxPolicy < MailboxPolicyIdParameter > : This parameter specifies
the managed folder mailbox policy to be applied to the new mailbox. If none is specified, the
default ManagedFolderMailboxPolicy applies. It is not a required parameter.

❑ ManagedFolderMailboxPolicyAllowed < SwitchParameter > : This parameter is used to
bypass the warning that messaging records management features are not supported for email
clients using versions of Microsoft Outlook earlier than Outlook 2007. It is not a required
parameter.

 Enable - Mailbox
 This cmdlet mailbox enables an existing user or InetOrgPerson object in Active Directory Services.
When successfully run, it creates additional mail attributes on the object and a mailbox on the Exchange
Server database to enable the object to send and receive email messages. Keep in mind that when using
this cmdlet, if the Alias parameter is not specified, an alias is created for the object using the User
Principal Name (UPN) and converts all non - ASCII characters to underscore characters. The list of
parameters is shown next. For a detailed list run the following in the Exchange Management Shell:
get-help Enable-Mailbox -detailed .

 Some key parameters to note include:

❑ Database < DatabaseIdParameter > : This is a required parameter and specifies the database
to host the enabled mailbox. It can take several formats such as GUID of database,
database name, or server name\database name.

❑ Alias < String > : This parameter modifies the email alias of the mailbox to be enabled.

❑ Equipment < SwitchParameter > : This switch parameter indicates that a resource mailbox of
type Equipment is to be created. It is a required parameter if creating an equipment resource
mailbox.

❑ LinkedDomainController < String > : A required parameter when creating a linked mailbox.
It is used to specify the domain controller in the forest where the user account to be granted
access to the mailbox resides. It is used in conjunction with the LinkedMasterAccount
parameter.

❑ LinkedCredential < PSCredential > : This parameter specifies the credentials used to access
the domain controller referenced in the LinkedDomainController parameter.

c04.indd 108c04.indd 108 12/17/07 5:27:30 PM12/17/07 5:27:30 PM

Chapter 4: Working with User and Group Objects

109

❑ LinkedMasterAccount < UserIdParameter > : This parameter specifies the master account
from the external forest that will be granted mailbox access to the linked mailbox. It is a required
parameter when creating linked mailboxes.

❑ Room < SwitchParameter > : As with the Equipment parameter, this is a switch parameter that
indicates the type of resource mailbox to be created is a room mailbox. It is a required parameter
when creating this resource mailbox.

❑ Shared < SwitchParameter > : This switch parameter is required when creating a shared
mailbox. A detailed description of the shared mailbox is provided earlier in this chapter.

❑ ManagedFolderMailboxPolicy < MailboxPolicyIdParameter > : This parameter specifies
the managed folder mailbox policy to be applied to the new mailbox. If none is specified, the
default ManagedFolderMailboxPolicy applies. It is not a required parameter.

❑ ManagedFolderMailboxPolicyAllowed < SwitchParameter > : This parameter is used to
bypass the warning that messaging records management features are not supported for email
clients using versions of Microsoft Outlook earlier than Outlook 2007. It is not a required
parameter.

❑ ActiveSyncMailboxPolicy < MailboxPolicyIdParameter > : As with the
ManagedFolderMailboxPolicy parameter, this parameter is used to specify
the ActiveSyncMailboxPolicy to be applied to the mailbox. If none is specified, the
default is used.

 Remove - Mailbox
 This cmdlet removes the user account associated with a mailbox and processes the deletion of the
mailbox based on the parameters specified or the configured mailbox retention policy. A list of
parameters is shown next. For a detailed list run the following in the Exchange Management Shell:
 get-help Remove-Mailbox -detailed .

Remove-Mailbox -Identity < MailboxIdParameter > [-DomainController < Fqdn >]
[-Permanent < $true | $false >] [< CommonParameters >]
Remove-Mailbox -Database < DatabaseIdParameter > -StoreMailboxIdentity
 < StoreMailboxIdParameter > [-DomainController < Fqdn >] [< CommonParameters >]

 Notice that the Identity parameter cannot be used in conjunction with the -Database parameter. Also
the StoreMailboxIdentity parameter must be used with the Database parameter.

 Specifying the Identity parameter alone simply disconnects the mailbox from the user, removes its
Active Directory user account, and the mailbox is removed from the Exchange database based on the
mailbox retention policy. By default, the mailbox remains disconnected for 30 days and then is purged
from the database. Using the Permanent parameter in addition overrides the retention policy and marks
the mailbox for deletion immediately.

 If there are existing disconnected mailboxes in the Exchange database, perhaps after running the
 Disable-Mailbox cmdlet, you can use the Database and StoreMailboxIdentity parameters to
remove a mailbox object from the Exchange database.

 This cmdlet requires the logged - on user to be a member of the Exchange Recipient Administrator Group
and belong to the local Administrators group on the computer.

c04.indd 109c04.indd 109 12/17/07 5:27:31 PM12/17/07 5:27:31 PM

Part I: PowerShell for Exchange Fundamentals

110

 Some key parameters to note include:

❑ Database < DatabaseIdParameter > : The Database parameter specifies the database that
contains the mailbox object. It must be used in conjunction with the StoreMailboxIdentity
parameter and cannot be used with the Identity parameter. The parameter can be any of the
following: GUID, database name, server name\database name, and server name\storage
group\database name.

❑ Identity < MailboxIdParameter > : This parameter identifies the mailbox object you want to
remove and can be any of the following attributes: ADObjectID, Distinguished Name (DN),
UPN, LegacyDN, GUID, email address, or alias. It cannot be used with the Database
parameter.

❑ StoreMailboxIdentity < StoreMailboxIdParameter > : The DomainController parameter
specifies the domain controller that writes this configuration change to Active Directory. Use the
fully qualified domain name (FQDN) of the domain controller that you want to use.

❑ Permanent < $true | $false > : Used in conjunction with the Identity parameter and
possible values for this parameter are $true or $false . The default is $false .

 Set - CASMailbox
 This cmdlet sets client access - related attributes and operates on one mailbox at a time. This cmdlet can
be used to configure properties for Microsoft Exchange ActiveSync, Microsoft Office Outlook Web
Access, Post Office Protocol version 3 (POP3), and Internet Message Access Protocol version 4rev1
(IMAP4) for a specified user. It can also be used to enable or disable Messaging Application
Programming Interface (MAPI) for an Exchange Server 2007 mailbox user. The Identity parameter is
a required parameter to use this cmdlet. A list of parameters is shown next. For a detailed list run the
following in the Exchange Management Shell: get-help Set-CASMailbox -detailed .

Set-CASMailbox -Identity < MailboxIdParameter > [-ActiveSyncAllowedDeviceIDs
 < MultiValuedProperty >] [-ActiveSyncEnabled < $true | $false >]
[-ActiveSyncMailboxPolicy < MailboxPolicyIdParameter >] [-ActiveSyncDebugLogging
 < Nullable >] [-DisplayName < String >] [-DomainController < Fqdn >] [-EmailAddresses
 < ProxyAddressCollection >] [-HasActiveSyncDevicePartnership < $true | $false >]
[-ImapEnabled < $true | $false >] [-ImapMessagesRetrievalMimeFormat < TextOnly |
HtmlOnly | HtmlAndTextAlternative | TextEnrichedOnly |
TextEnrichedAndTextAlternative | BestBodyFormat >] [-ImapUseProtocolDefaults < $true
| $false >] [-MAPIBlockOutlookNonCachedMode < $true | $false >]
[-MAPIBlockOutlookRpcHttp < $true | $false >] [-MAPIBlockOutlookVersions < String >]
[-MAPIEnabled < $true | $false >] [-Name < String >] [-OWAActiveSyncIntegrationEnabled
 < Nullable >] [-OWAAllAddressListsEnabled < Nullable >] [-OWACalendarEnabled
 < Nullable >] [-OWAChangePasswordEnabled < Nullable >] [-OWAContactsEnabled < Nullable >]
[-OWAEnabled < $true | $false >] [-OWAJournalEnabled < Nullable >]
[-OWAJunkEmailEnabled < Nullable >] [-OWANotesEnabled < Nullable >]
[-OWAPremiumClientEnabled < Nullable >] [-OWARemindersAndNotificationsEnabled
 < Nullable >] [-OWASearchFoldersEnabled < Nullable >] [-OWASignaturesEnabled
 < Nullable >] [-OWASpellCheckerEnabled < Nullable >] [-OWATasksEnabled < Nullable >]
[-OWAThemeSelectionEnabled < Nullable >] [-OWAUMIntegrationEnabled < Nullable >]
[-OWAUNCAccessOnPrivateComputersEnabled < Nullable >]
[-OWAUNCAccessOnPublicComputersEnabled < Nullable >]
[-OWAWSSAccessOnPrivateComputersEnabled < Nullable >]
[-OWAWSSAccessOnPublicComputersEnabled < Nullable >] [-PopEnabled < $true | $false >]

c04.indd 110c04.indd 110 12/17/07 5:27:31 PM12/17/07 5:27:31 PM

Chapter 4: Working with User and Group Objects

111

[-PopMessagesRetrievalMimeFormat < TextOnly | HtmlOnly | HtmlAndTextAlternative |
TextEnrichedOnly | TextEnrichedAndTextAlternative | BestBodyFormat >]
[-PopUseProtocolDefaults < $true | $false >] [-PrimarySmtpAddress < SmtpAddress >]
[-ProtocolSettings < MultiValuedProperty >] [-SamAccountName < String >]

 This cmdlet requires the logged - on user to be a member of the Exchange Recipient Administrator Group
and belong to the local Administrators group on the computer.

 Some key parameters to note include:

❑ Identity < MailboxIdParameter > : This is a required parameter. It can be the Active
Directory Object ID or a string that represents the GUID, distinguished name, domain or
 account, user principal name (UPN), legacy Exchange distinguished name, Simple Mail
Transfer Protocol (SMTP) address, or alias.

❑ ActiveSyncAllowedDeviceIDs < MultiValuedProperty > : This parameter accepts a list of
device IDs that are allowed to synchronize with the mailbox.

❑ ActiveSyncEnabled < Boolean > : This parameter enables or disables Exchange ActiveSync.

❑ ImapEnabled < Boolean > : This parameter specifies whether the IMAP4 protocol is enabled for
this mailbox.

❑ PopEnabled < Boolean > : This parameter specifies whether the POP3 protocol is enabled for
this mailbox.

❑ MAPIBlockOutlookNonCachedMode < Boolean > : This parameter specifies whether Outlook
can be used in online mode.

❑ MAPIBlockOutlookRpcHttp < Boolean > : This parameter specifies whether clients can connect
to Outlook by using Outlook Anywhere.

❑ MAPIEnabled < Boolean > : This parameter specifies whether the MAPI protocol is enabled for
the mailbox.

❑ OWAChangePasswordEnabled < Nullable > : This parameter specifies whether users can
change their password in Outlook Web Access.

 Export - Mailbox
 This cmdlet is new in Exchange Server 2007 SP1 and is used to export contents of a mailbox to either a
folder or .pst file. This is a feature that has been requested by administrators for some time now. You
can export data from mailboxes residing on Exchange 2000 SP3, Exchange 2003 SP2, and Exchange
Server 2007 servers. There are some considerations to keep in mind while using this cmdlet:

❑ Export-Mailbox cannot span multiple Active Directory forests. In other words, the source and
target mailboxes must be in the same Active Directory forest.

❑ Although this feature has been requested by many, at this time, you cannot export data to a
 .pst file from a mailbox that is located in a Recovery Storage Group (RSG), nor can you export
contents from a public folder database.

❑ You must be running on a 32 - bit machine and have Outlook 2003 SP2 or later installed.

c04.indd 111c04.indd 111 12/17/07 5:27:31 PM12/17/07 5:27:31 PM

Part I: PowerShell for Exchange Fundamentals

112

 Several parameters that provide flexibility with export of mailbox contents are available. For a detailed
list run the following in the Exchange Management Shell: get-help export-Mailbox -detailed .

❑ PSTFolderPath < LongPath > : This parameter specifies the path of the .pst file to which data
will be exported. If a folder is specified, it must be created first.

❑ TargetFolder < String > : This parameter specifies the top - level mailbox folder that will be
created on the mailbox specified by the TargetMailbox parameter. This folder will contain a
subfolder called Recovered Data - < source mailbox alias > - < date time stamp > . The subfolder
contains the exported data. If the target folder that you specify already exists on the target mail-
box, the exported data will be added to the existing folder. If the target folder does not exist, it
will be created.

❑ AllContentKeywords < String[] > : This parameter specifies the keywords of the content to
include in the move. If the command finds a keyword that you specify in the message body,
attachment content, or subject, it will export those messages. This is different from using
both the ContentKeywords and SubjectKeywords parameters. If you use both the
 ContentKeywords and SubjectKeywords parameters, the command will export only
those messages that have both the keyword that you specify for the ContentKeywords
parameter in the message body or attachment content, and the keyword you specify for the
 SubjectKeywords parameter in the subject.

❑ TargetMailbox < MailboxIdParameter > : This parameter specifies the mailbox where the
target folder will be created. The mailbox that you specify must exist for the command to
complete successfully. Possible values are True or False . If set to True , anti - spam processing is
skipped for the mailbox.

❑ StartDate < DateTime > : This parameter specifies the start date for filtering content that will be
exported from the source mailbox. Only items in the mailbox whose date is later than the start
date will be exported. When you enter a specific date, use the short date format that is defined
in the Regional Options settings that are configured on the local computer. For example, if your
computer is configured to use the short date format mm/dd/yyyy, enter 03/01/2006 to specify
March 1, 2006.

❑ ValidateOnly < SwitchParameter > : This parameter provides the option to validate the export
without exporting the data. The ValidateOnly parameter validates any prerequisites for the
command. If you run the Export-Mailbox command with this parameter, the command will
not apply any filters to the messages. It will only check if the source and target mailboxes exist.

❑ AttachmentFilenames < String[] > : This parameter specifies the filter for attachments. You
can use wildcard characters in the string. For example, you can use “*.txt” to export items that
have a .txt extension.

 Import - Mailbox
 This cmdlet is also new in Exchange Server 2007 SP1 and it imports mailbox data from a .pst file into a
mailbox. As in the case of the Export-Mailbox cmdlet, there are some considerations to keep in mind
while using this cmdlet:

❑ You can only import mailbox data to a mailbox residing on Exchange Server 2007. Import to
earlier versions of Exchange must use the exmerge utility previously available.

c04.indd 112c04.indd 112 12/17/07 5:27:32 PM12/17/07 5:27:32 PM

Chapter 4: Working with User and Group Objects

113

❑ You cannot import data from a .pst file to a mailbox that is located in a Recovery Storage
Group (RSG), nor can you import data into a public folder database.

❑ You must be running on a 32 - bit machine and have Outlook 2003 SP2 or later installed.

 Several parameters that provide flexibility with import of mailbox contents are available. For a detailed
list run the following in the Exchange Management Shell: get-help export-Mailbox -detailed .

❑ PSTFolderPath < > : This parameter specifies the path of the .pst file from which data will be
imported. Can be used to convert from one mailbox type to another.

❑ AllContentKeywords < > : The AllContentKeywords parameter specifies the keywords of
the content to include in the import. If the command finds a keyword that you specify in the
message body, attachment content, or subject, it will import those messages. This is different
from using both the ContentKeywords and SubjectKeywords parameters. If you use both the
 ContentKeywords and SubjectKeywords parameters, the command will import only those
messages that have both the keyword that you specify for the ContentKeywords parameter
in the message body or attachment content, and the keyword you specify for the
 SubjectKeywords parameter in the subject.

❑ AttachmentFilenames < > : This parameter specifies the filter for attachments. You can use
wildcard characters in the string. For example, you can use “*.txt” to import items that have a
 .txt extension.

❑ BadItemLimit < > : This parameter specifies the number of corrupted items in a .pst file to
skip before the import operation fails.

❑ MaxThreads < > : The MaxThreads parameter specifies the maximum number of threads to use.
The default value is 4.

❑ SenderKeywords < > : The SenderKeywords parameter specifies the keywords of the content
to include in the import. If the command finds a keyword that you specify in the sender, it will
import those messages.

❑ ValidateOnly < > : This parameter provides the option to validate the import without
importing the data. The ValidateOnly parameter validates any prerequisites for the command.
If you run the Import-Mailbox command with this parameter, the command will not apply
any filters to the messages. It will only check if the source and target mailboxes exist.

❑ EndDate < > : This parameter specifies the end date for filtering content that will be imported to
the target mailbox. Only items in the .pst file whose date is prior to or the same as the end date
will be imported. When you enter a specific date, use the short date format that is defined in
the Regional Options settings that are configured on the local computer. For example, if your
computer is configured to use the short date format mm/dd/yyyy, enter 03/01/2006 to specify
March 1, 2006.

 Creating a User Mailbox
 The New-Mailbox cmdlet is used to create a new user mailbox. This creates a new user account in Active
Directory and a new mailbox on a mailbox database on Exchange Server 2007. The mailbox is enabled
and ready to send and receive email messages. The New-Mailbox cmdlet discussed earlier can also be
used to mailbox - enable an existing user account in Active Directory. The account used for setting up the

c04.indd 113c04.indd 113 12/17/07 5:27:32 PM12/17/07 5:27:32 PM

Part I: PowerShell for Exchange Fundamentals

114

new mailbox must be granted the Exchange Recipient Administrator role and Account Operator role for
the Active Directory container the user will be created in. Each Active Directory domain a user mailbox
will be created in must be prepared for Exchange Server 2007 using the setup.com /prepareDomain
switch.

 Run the following from the Exchange Management Shell to create a new user mailbox:

New-mailbox -UserPrincipalName mstest1@exchangeexchange.local -alias mstest1 -
database “First Storage Group\Mailbox Database” -Name Mstest1Exch -
OrganizationalUnit Users -password $Password -FirstName Mstest1 -LastName Exch -
DisplayName “Mstest1 Exch” -ResetPasswordOnNextLogon $true

 The previous example creates a user MSTest1 Exch in Active Directory and a mailbox for that user. The
mailbox is located on the First Storage Group, in mailbox database. The password must be reset at the
next logon. Also the Organizational Unit where this user will be created has been specified.

 To set the initial value of the password, you can create a variable called $password that prompts you to
enter an initial password and assigns that password to the variable as a SecureString object:

$Password = Read-Host “Please Enter your password:” -AsSecureString

 The Read-Host cmdlet reads a line of input from the console. It can be used to prompt for input from a
user or to create secure strings. Hence it takes the prompt or AsSecureString switch parameters. In
the previous example, Read-Host presents Please Enter your password : as a prompt and then each
keystroke will be displayed as an asterisk (*). Upon completion the password is stored as a secure string
in the variable $Password . See Figure 4 - 21 .

Figure 4-21

 If the password parameter is not specified during the creation of the user mailbox, Exchange
Management Shell prompts for the password before the user is created.

 Several other parameters can be specified during the creation of the user such as the
 ActiveSyncMailbox or ManangedFolderMailbox policies as well as setting the domain controller
against which the user will be created. Also, you can specify the database by “ Server name\Database
name. ” This allows you determine the server on which the mailbox will be created. See the detailed list
of parameters described earlier in this section.

c04.indd 114c04.indd 114 12/17/07 5:27:33 PM12/17/07 5:27:33 PM

Chapter 4: Working with User and Group Objects

115

 It is worthwhile to mention a slight change in SP1. In the RTM version of Exchange Server 2007, the
Exchange Management Console New Mailbox Wizard presents you with the Server name, Storage
group, and Mailbox database fields. (See Figure 4 - 22 .)

Figure 4-22

 In SP1 you simply have the option to select a mailbox database and can browse all the mailbox store
databases in the organization depending on the scope of the Management Console (see Figure 4 - 23).
These are simply Management Console changes and do not reflect any changes in the Exchange
Management Shell.

c04.indd 115c04.indd 115 12/17/07 5:27:34 PM12/17/07 5:27:34 PM

Part I: PowerShell for Exchange Fundamentals

116

 In the New Mailbox Wizard, when you click the Browse button as shown in Figure 4 - 23 , you are
presented with available mailbox databases to select from. (See Figure 4 - 24 .)

 For an existing Active Directory user account or interOrgPerson , the Enable-Mailbox cmdlet can
be used to create mailbox attributes on the user object. When an email is sent to the user, an Exchange
mailbox object is created in the Exchange database. At a minimum, the identity and the database
parameters can be specified to enable a mailbox. This cmdlet can be used to enable an existing
Active Directory user object as a user mailbox, resource mailbox, linked mailbox, or shared mailbox.

Figure 4-23

c04.indd 116c04.indd 116 12/17/07 5:27:34 PM12/17/07 5:27:34 PM

Chapter 4: Working with User and Group Objects

117

Figure 4-24

A key point to note is that when mailbox - enabling an existing user, if an alias is not specified, the user
principal name (UPN) is used and all non - ASCII characters converted to underscore characters. The
potential exists for the user account to have a non - ASCII value for the UPN. In this case, when you
mailbox - enable the user, the alias will be changed to all underscore characters. To avoid this, confirm
that the user account has an ASCII UPN before you create the new mailbox, or make sure you specify a
value for the alias. To enable an existing Active Directory object, run the following command:

Enable-Mailbox MailUser1@ExchangeExchange.local -Database “Mailbox Database”

 The New-Mailbox cmdlet is also used to create a new linked mailbox. As you recall, a linked mailbox is
a mailbox that is accessed by an external account not in the Exchange forest, although a disabled
Windows account in the Exchange forest is associated with it. Hence the following parameters must be
specified: LinkedDomainController , LinkedMasterAccount , and LinkedCredential . The example
in Figure 4 - 25 and Figure 4 - 26 shows how to create a new linked mailbox. This command creates a new
linked mailbox called “ Mslinked Exch” to be accessed by the user called RemoteAdmin in the
 Gamisoft Active Directory forest.

c04.indd 117c04.indd 117 12/17/07 5:27:35 PM12/17/07 5:27:35 PM

Part I: PowerShell for Exchange Fundamentals

118

 First you specify the account to be used to access the linked domain controller in the external forest and
you are prompted for its credentials. After supplying the credentials, the linked mailbox is successfully
created Using the Get-Recipient cmdlet you verify that the mailbox created is indeed a linked
mailbox. (See Figure 4 - 26 .)

Figure 4-25

Figure 4-26

 As an option, rather than being prompted for the password, you can use the Get-Credential cmdlet to
specify the account to be used to access the external forest. This cmdlet creates a credential object for a
specified username and password. When a username and password are specified, the cmdlet creates a
 PSCredential object representing the credentials passed. You can assign it to a variable object and use
the variable as an input to cmdlets requesting user authentication.

c04.indd 118c04.indd 118 12/17/07 5:27:35 PM12/17/07 5:27:35 PM

Chapter 4: Working with User and Group Objects

119

 You can easily convert a linked mailbox to a regular user mailbox. First, however, you must disable the
linked mailbox and then reconnect the Mailbox object to a user object in the same Active Directory
forest as the Exchange server:

Disable-Mailbox -Identity Mslinked
Connect-Mailbox -Identity Mslinked -Database “Mailbox Database” -User UserLocalAD

 The New-Mailbox cmdlet is used to create a new shared mailbox. This requires the shared switch
parameter of the New-Mailbox cmdlet. All other parameters remain the same, as shown in Figure 4 - 27 .

Figure 4-27

 Modifying a User Mailbox
 After a user mailbox is created, several operations could be performed on the user mailbox ranging from
changing one or more attributes to disconnecting and removing the mailbox.

 Disabling, Disconnecting, or Removing a User Mailbox
 When a user leaves an Exchange organization or due to some administrative reason, it may be necessary
to remove the user ’ s mailbox. The Remove-Mailbox cmdlet is used to accomplish this, however keep in
mind that this cmdlet also removes the Active Directory user object. To disconnect the mailbox for user
 Mstest from Mstest ’ s user account and also delete the user account, run the following command:

Remove-Mailbox -Identity ExchangeExchange\Mstest

 To immediately delete the mailbox and the user account for Mstest , run the following command:

Remove-Mailbox -Identity ExchangeExchange\Mstest -Permanent $true

 In both cases, you are prompted to confirm the deletion before proceeding. You can also use the whatif
parameter to obtain an explanation of what you are about to do.

 In some cases you may want to simply disconnect the mailbox from the associated Active Directory user
account while retaining the user account. This is similar to removing all Exchange attributes as

c04.indd 119c04.indd 119 12/17/07 5:27:36 PM12/17/07 5:27:36 PM

Part I: PowerShell for Exchange Fundamentals

120

performed in Exchange Server 2000/2003. In this case, use the Disable-Mailbox cmdlet to disconnect
the mailbox. The mailbox will be marked for deletion/removal per the mailbox retention policy.

 In Figure 4 - 28 we first obtain a list of disconnected mailboxes on a database on server Ex7B and assign it
to a variable. Notice the mailbox ExTest is a disconnected mailbox. Next we use the Remove-Mailbox
cmdlet to purge the mailboxes from the Exchange database. We confirm the mailbox removal by looking
at the MailboxStatistics again.

$Temp = Get-MailboxStatistics -Database “Ex7B\Mailbox Database” | Where
{$_.DisconnectDate -ne $null}
Remove-Mailbox -Database “Ex7B\Mailbox Database” -StoreMailboxIdentity
$Temp.MailboxGuid

Figure 4-28

 Enabling and Disabling Client - Access Related Attributes
 Several client - access attributes can be modified for users on Exchange Server 2007. These include
Outlook Web Access (OWA), ActiveSync, POP3, and IMAP4 attributes. The Set-CASMailbox cmdlet can
be used to modify these attributes. For more information on this cmdlet, see the “ Set - CASMailbox ”

c04.indd 120c04.indd 120 12/17/07 5:27:36 PM12/17/07 5:27:36 PM

Chapter 4: Working with User and Group Objects

121

section earlier in the chapter. Remember that this cmdlet requires the identity property. In addition,
you can enable one or multiple features in a single statement. Following are a few examples.

 You can enable or disable the ability of clients to use OWA, now known as Outlook Anywhere, in
Exchange Server 2007 by setting the OWAEnabled parameter to true or false :

Set-CASMailbox -Identity ExchUser@ExchangeExchange.local -OWAEnabled $true

 You can enable/disable multiple attributes in the same statement. For example, you may want to enable
OWA, POP3, IMAP4, and ActiveSync while disabling MAPI access for a user:

Set-CASMailbox -Identity ExchUser@ExchangeExchange.local -OWAEnabled: $true -
POPEnabled:$true -ImapEnabled:$true -ActiveSyncEnabled:$true -MAPIEnabled:$false

 To disable MAPI access for all users, edit the Disable MAPI Clients string value in
 HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\MSExchangeIS\ParametersSystem .

 You may need to create this value because it may not exist by default. View the version of the
 Emsmdb32.dll file to determine the MAPI Outlook client version and enter one of the following:

❑ To disable a specific MAPI client version, type: 12.1234.01

❑ To disable a range of MAPI client versions, type 11.1234.01-12.1234.01

❑ To disable an open - ended range of MAPI client versions, type -12.1234.01

❑ To disable multiple sets of MAPI client versions, use either commas or semicolons to separate
the sets as follows: 11.1234.01-11.9999.01;12.1234.01-12.5000.01

 Managing Other User Mailbox Properties
 You can manage a variety of other properties on the user mailbox such as updating phone or address
information, adding email addresses, changing message size limits, configuring storage quota and
anti - spam features; the list goes on. Consider a few examples given here.

 You can configure message size limits for a user mailbox. This determines the maximum message size a
user can send or receive. Although message size limits could be configured at the mailbox level, there are
other configurations or settings that can determine conclusively what size a user can send or receive. For
example, the message size limit configured on the Hub Transport server, if less than that configured on
the user mailbox, may override the size of message the user can send. To set the sending and receiving
message sizes for the user mailbox of ExchUser to 15 megabytes (MB), run the following command:

Set-Mailbox -Identity “ExchUser” -MaxSendSize 15MB -MaxReceiveSize 15MB

 You can also restrict the number of Recipients a message can have at the mailbox level. Keep in mind
that this can also be configured at the Hub Transport, Receive Connector, and Organizational levels. In
the following example, you can restrict the number of Recipients per message to 450 for the ExchUser
mailbox by running the following command:

Set-Mailbox -Identity “ExchUser” -RecipientLimits 450

c04.indd 121c04.indd 121 12/17/07 5:27:37 PM12/17/07 5:27:37 PM

Part I: PowerShell for Exchange Fundamentals

122

 Most PowerShell cmdlets allow you to pipe the output of one noun to another noun in order to view or
modify related objects. In the following example, you can set the mailbox limit on all mailboxes that
reside in a specific mailbox database on a server by running the command:

 Get-MailboxDatabase “Mailbox Database” | Get-Mailbox | Set-Mailbox -
ProhibitSendQuota 500MB

 This command retrieves all the mailboxes that reside in the mailbox database and sets their
 ProhibitSendQuota value to 500MB.

 You can use the Exchange Management Shell Move-Mailbox cmdlet to move a user ’ s mailbox to a
different database or server. This can also be accomplished for multiple user mailboxes simultaneously.
For example, you can use the Get-Mailbox cmdlet to retrieve a list of user mailboxes that match a
certain CustomAttribute and use the Move-Mailbox cmdlet to get them moved:

Get-Mailbox -Filter { CustomAttribute3 -eq ‘pilots’ } | Move-Mailbox -
TargetDatabase “Ex7B\Mailbox Database”

 Unlike most of the earlier commands, when adding an email address to a user mailbox object it is not
possible to accomplish that with a single command. To add an email address to an existing mailbox, you
need to store the mailbox configuration in a variable and modify the EmailAddresses field of that
variable. After storing the EmailAddresses field in the variable, use either of the following methods to
add two more addresses to the ExchUser mailbox:

$Temp = Get-Mailbox -Identity
$Temp.EmailAddresses.Add(“smtp:ExchUser@2ndEmail.ExchangeExchange.local”)
$Temp.EmailAddresses += (“smtp: ExchUser@3rdEmail.ExchangeExchange.local”)
Set-Mailbox -Instance $Temp

 Creating a Resource Mailbox
 The New-Mailbox cmdlet is also used to create a new resource mailbox. As described earlier in this chapter,
in Exchange Server 2007, two resource mailbox types can be created: the room and equipment resource
mailboxes. Note that you can also create as shared mailbox, but use of this mailbox type is de - emphasized
in Exchange Server 2007. Also mentioned earlier was the fact that the Active Directory user account
associated with a resource mailbox is a disabled Windows account. After creating the resource mailbox,
re - enabling this account is not recommended. If access is needed to a resource mailbox using a MAPI client
or Outlook Web Access, then grant the account full access rights as you would a delegate.

 To create a room mailbox, specify the Room switch parameter in addition to other parameters as
shown here:

New-Mailbox -database “EX7B\First Storage Group\Mailbox Database” -Name MediaRoom -
OrganizationalUnit “Conference Rooms” DisplayName “MediaRoom” -UserPrincipalName
MediaRoom@ExchangeExchange.local -Room

 To create an equipment mailbox, specify the Equipment switch parameter:

New-Mailbox -database “EX7B\First Storage Group\Mailbox Database” -Name PrinterA -
OrganizationalUnit Equipment -DisplayName “PrinterA” - UserPrincipalName
PrinterA@ExchangeExchange.local -Equipment

c04.indd 122c04.indd 122 12/17/07 5:27:37 PM12/17/07 5:27:37 PM

Chapter 4: Working with User and Group Objects

123

 To create a shared mailbox, specify the Shared switch parameter. See Figure 4 - 28 earlier in this chapter.

 To create a resource mailbox using an existing Active Directory user account, use the Enable-Mailbox
cmdlet. Ensure that the Active Directory account is already disabled and specify the identity of the object
and database where the mailbox will be created. Finally, specify the type of resource, either a room or
equipment mailbox using the Room or Equipment switch parameters. If you attempt to use an existing
enabled account in the Active Directory, you get the following error:

Enable-Mailbox : The user account must be logon-disabled for linked, shared or
resource mailbox.

 Although the new resource mailbox has been created, it is not completely configured and will not allow
for automatic resource scheduling. To enable Auto - Accept use the Set-MailboxCalendarSettings
cmdlet to allow the resource mailbox to auto - accept meetings for which it is invited. In Figure 4 - 29 , we
create a new resource mailbox and enable it to auto - accept meetings to which it is scheduled.

Figure 4-29

 Modifying a Resource Mailbox
 Once the resource mailbox is created, it can be converted from one type to another. For example, you
may wish to convert your existing shared mailbox migrated from Exchange Server 2003 to a conference
room or equipment mailbox or even to a user mailbox. In addition, you can disable a resource mailbox or
define properties such as the resource capacity, location, and other custom attributes. The Set-Mailbox
or Set-ResourceConfig cmdlets can be used to modify and/or define custom attributes for resource
mailboxes.

 To convert a shared mailbox to a resource mailbox, use the Set-Mailbox cmdlet and specify the identity
of the shared mailbox to be converted. Next use the type parameter to indicate the type of resource you
are converting it to such as room or equipment. As an example, see Figure 4 - 14 earlier in this chapter.

 To disable a resource mailbox, simply use the Disable-Mailbox cmdlet. Keep in mind that this operation
removes the mailbox ’ s Exchange attributes from Active Directory but the mailbox is not deleted, and can
be reconnected to its user at a later date by using the Connect-Mailbox cmdlet. On the other hand, using
the Remove-Mailbox cmdlet will remove the Active Directory user account and mark the mailbox for
deletion. To disconnect the resource mailbox, you must specify the identity of the resource mailbox:

Disable-Mailbox -Identity “ExchangeExchange.local/Users/Equipment ExchExch”

c04.indd 123c04.indd 123 12/17/07 5:27:37 PM12/17/07 5:27:37 PM

Part I: PowerShell for Exchange Fundamentals

124

 Also keep in mind that if the resource mailbox has been configured to auto - accept meeting requests or
any other automated processing of meetings has been configured, these must be disabled first before the
resource mailbox can be fully disabled.

 To modify the capacity or meeting duration of a conference room mailbox, you use the Set-Mailbox
and Set-MailboxCalendarSettings cmdlets. Figure 4 - 30 shows the default settings of the
MediaRoom1 resource mailbox using the Get-Mailbox and Get-MailboxCalendarSettings cmdlets;
next the capacity and duration of the mailbox is changed using the Set cmdlets and the new settings
displayed thereafter.

Figure 4-30

c04.indd 124c04.indd 124 12/17/07 5:27:38 PM12/17/07 5:27:38 PM

Chapter 4: Working with User and Group Objects

125

 Notice the default values set; for example, MaximumDurationInMinutes is 1440 and resource capacity
is not set. In Figure 4 - 31 , these values are changed. The ResourceCustom property, though, is not
changed.

Figure 4-31

 The Set-ResourceConfig cmdlet allows you define custom properties on the resource mailboxes.
In Exchange Server 2003, it was difficult to determine what a conference room contained, such as TV,
projector, refrigerator, and so on. The only way to determine this was to use the display name to
identify the contents of the room (for example, ConferenceRoom1-Projector-Refrigerator).
In Exchange Server 2007, users can easily locate the type of conference room they desire to use by
the additional attributes configured on the conference room or equipment mailbox. This can be
accomplished by extending the ResourcePropertySchema property of the ResourceConfig object.
Thereafter you can apply the additional attributes to a desired resource mailbox. This is as shown in
Figure 4 - 32 .

c04.indd 125c04.indd 125 12/17/07 5:27:38 PM12/17/07 5:27:38 PM

Part I: PowerShell for Exchange Fundamentals

126

 Because the ResourcePropertySchema property is an array of strings, each time the
 Set-ResourceConfig cmdlet is used it overwrites rather than appends the existing value. In that
case, to append to any existing value, simply assign a variable to “Get-ResourceConfig -
ResourcePropertySchema” and add additional values. Additional values must be added in the format
of “Room/ “ or “Equipment/ “ . Then pass the assigned variable to the Set-ResourceConfig cmdlet
with the Instance parameter.

 Creating a Mail User and Mail Contact
 Mail contacts and mail users are both mail - enabled Active Directory objects that contain information
about people or organizations not existing in the Exchange organization. However, there is a marked
difference between both. Although the mail contact stores information about a person external to the
Exchange organization, it does not have access to internal resources in the forest. On the other hand, the
mail user has Active Directory logon credentials and has access to local resources to which they are
granted.

 To create a new mail contact, use the New-MailContact cmdlet. This cmdlet creates a new mail contact
object in Active Directory and mail - enables the object. The ExternalEmailAddress parameter specifies
the target address or proxy address of the external person:

New-MailContact -Name “John Doe” -ExternalEmailAddress John@Foreigndomain.com -
OrganizationalUnit ForeignDomain

Figure 4-32

c04.indd 126c04.indd 126 12/17/07 5:27:39 PM12/17/07 5:27:39 PM

Chapter 4: Working with User and Group Objects

127

 You can also enable an existing contact in Active Directory using the Enable-MailContact cmdlet and
specifying the external email address of the user. This cmdlet also requires that you specify the identity
of the existing contact to be mail - enabled:

Enable-MailContact -Identity “John Doe” -ExternalEmailAddress John@Foreigndomain.com

 To create a new mail user, use the New-MailUser cmdlet:

New-MailUser -Name John -FirstName John -LastName Doe -ExternalEmailAddress
John@ForeignDomain.com -UserPrincipalName John@ExchangeExchange.local -
OrganizationalUnit ForeignDomain -Password
$Password

 Make sure the password has been assigned a variable $Password . In addition, you can also mail - enable
an existing Active Directory user object using the Enable-MailUser cmdlet.

 Modifying a Mail User and Mail Contact
 Modifying mail user or mail contact could involve disabling, removing, or simply updating certain
attributes of both objects.

 To remove an existing mail contact from Active Directory, use the Remove-MailContact cmdlet and run
the following command:

Remove-MailContact -Identity “John Doe” -DomainController ExchangeExchange.Local

 The Remove-MailContact cmdlet has just two parameters: the identity of the object to be removed,
which is required, and the FQDN of the domain controller that writes the configuration change to Active
Directory. The second parameter is optional. Keep in mind that using this command not only removes
the associated Exchange configuration on the contact, but it also removes MailContact object itself from
Active Directory.

 Disabling the mail contact involves removing all the Exchange attributes from the contact. This, however,
does not remove the object from Active Directory. To accomplish this, use the Disable-MailContact
cmdlet. As with the Remove-MailContact cmdlet, this cmdlet has two parameters: the identity, which is
required, and the FQDN of the domain controller, which writes the change in Active Directory:

Disable-MailContact -Identity “John Doe” -DomainController ExchangeExchange.Local

 The same applies to the mail user. You can remove or disable the mail user using the Remove-MailUser
and Disable-MailUser cmdlets, respectively. For example:

Disable-MailUser John@ExchangeExchange.local

c04.indd 127c04.indd 127 12/17/07 5:27:39 PM12/17/07 5:27:39 PM

Part I: PowerShell for Exchange Fundamentals

128

 To change attributes on the mail contact or mail user, use the Set-User and Set-Contact cmdlets to
specify the changes required. The following example shows how the Set-User cmdlet is used to
configure the phone number and address for an Active Directory user object called John:

Set-User -Identity Amy@ExchangeExchange.local -Phone “(972) 660-5005” -
StreetAddress “1098 Huntington Street” -City “Paris” -StateOrProvince “TX” -
PostalCode “75460”

 To use the Exchange Management Shell to add a user to an administrator role, run the following
command:

Add-ExchangeAdministrator -Role OrgAdmin -Identity ExchangeExchange\John

 Creating and Modifying Group Objects
 To facilitate mass distribution of email messages and other information to multiple users in an Exchange
organization, Exchange makes use of group objects. Security Group objects are also used to grant
multiple Recipients access to a shared resource. Exchange Server 2007 supports four group object types,
which are Mail - Enabled Universal Distribution or Security Group, Mail - Enabled Nonuniversal Groups,
and Dynamic Distribution Groups. For more information on these group types, see the “ Exchange
Server 2007 Group Objects ” section earlier in this chapter. In this section, we cover the creation and
modification or management of these group types. Keep in mind a significant change in the default
configuration of group objects in Exchange Server 2007. By default mail - enabled groups created in
Exchange Server 2007 will only accept messages from authenticated users. This would prevent external
users from sending messages to the group or emailing spam to a large number of users in the
organization. In Exchange Server 2000 and 2003, by default, the Distribution Group accepted messages
from everyone.

 To create a new Mail - Enabled Universal Distribution or Security Group, use the
New-DistributionGroup cmdlet. This cmdlet requires that the Name, Organizational Unit,
SAMAccountName, and Type be specified. The Type parameter determines whether the group
is a Distribution or Security Group:

New-DistributionGroup -Name “ExchUDG” -OrganizationalUnit Users -SAMAccountName
“ExchUDG” -Type “Distribution”
New-DistributionGroup -Name “ExchUSG” -OrganizationalUnit Users -SAMAccountName
“ExchUSG” -Type “Security”

 To mail - enable an existing Universal group in Active Directory, use the Enable-DistributionGroup
cmdlet. This cmdlet requires that the identity of the group to be mail - enabled be specified. The identity
parameter can be the GUID of the group, Distinguished Name, or “Domain\Account name” :

Enable-DistributionGroup -Identity “ExchUSG1 Group”

 As with all other Recipient objects discussed, using the Remove cmdlet removes not only the
mail - enabled properties but also the object itself from Active Directory. It is the same with Distribution

c04.indd 128c04.indd 128 12/17/07 5:27:39 PM12/17/07 5:27:39 PM

Chapter 4: Working with User and Group Objects

129

Groups. Use the Remove-DistributionGroup cmdlet to remove a Distribution Group from Active
Directory. This cmdlet requires the identity of the group object to be specified.

 Group objects have members and any Recipient type including other groups can be members
of a Distribution or Security Group. Using the Exchange Management Shell, you can add members
to or remove members from a Group object. This can be accomplished using the
Add-DistributionGroupMember and Remove-DistributionGroupMember cmdlets. When
removing a member from a group, you are prompted to confirm the removal before the member is
removed. Both cmdlets have three parameters, with Identity and Member being required parameters;
 DomainController is an optional parameter:

Add-DistributionGroupMember -Identity “ExchUDG” -Member amy@ExchangeExchange.local

Remove-DistributionGroupMember -Identity “ExchUDG” -Member
amy@ExchangeExchange.local

 After making changes, use the Get-DistributionGroupMember cmdlet to confirm addition or removal
of members to the Distribution Group. This cmdlet shows the current members of the Distribution
Group.

 Exchange Server 2007 allows for the conversion of existing global or local groups to Universal Security
or Distribution Group. The Set-Group cmdlet is used to accomplish this.

 The Dynamic Distribution Group
 The Dynamic Distribution Group, previously known as Query Based Distribution Group, differs from
other groups supported in Exchange Server 2007. Its membership list is based on a specified precanned
or custom filter and this list is calculated each time a message is sent to the Distribution Group. All
Recipients that match the filter will receive the message sent to the Distribution Group. Like the other
groups supported in Exchange Server 2007, the Dynamic Distribution Group receives messages only
from authenticated users.

 To create a new Dynamic Distribution Group, use the New-DynamicDistributionGroup cmdlet.
Required parameters for this cmdlet include the Name, Organizational Unit, IncludedRecipients ,
and RecipientFilter . The RecipientFilter parameter is used when creating a custom filter for the
Distribution Group. In the following example, the IncludedRecipients parameter specifies all
mailbox users in the organization. The Dynamic Distribution Group is created in the Users
Organizational Unit:

New-DynamicDistributionGroup -IncludedRecipients MailboxUsers -Name
 “ExchMailboxUsers” -OrganizationalUnit Users

c04.indd 129c04.indd 129 12/17/07 5:27:40 PM12/17/07 5:27:40 PM

Part I: PowerShell for Exchange Fundamentals

130

 A custom filter can also be specified using the RecipientFilter parameter. The following filter
indicates all user mailboxes residing on server EX7B but excluding the system mailboxes. You must
exclude the system mailboxes especially if you are coexisting with Exchange Server 2000/2003:

New-DynamicDistributionGroup -Name “EX7BMailboxUsers” -OrganizationalUnit Users -
RecipientFilter {((RecipientType -eq ‘UserMailbox’ -and ServerName -eq ‘EX7B’) -and
-not(Name -like ‘SystemMailbox{*’))}

 Unlike the Universal Distribution or Security Groups (Get-DistributionGroupMembers), it is not
possible to view the Dynamic Distribution Group members with a single cmdlet where a custom filter is
used. With the exception of precanned filters, the Exchange Management Console does not provide a
means yet of viewing a Dynamic Distribution Group ’ s membership, unlike the preview button that
existed with the Query Based Distribution Group.

 To view the Dynamic Distribution Group ’ s members, assign a variable to the
Get-DynamicDistributionGroup cmdlet for the designated group. Each
 DynamicDistributionGroup object has a RecipientFilter property, which indicates
the group membership criteria. Next use the Get-Recipient cmdlet with the -Filter string
to return the members of the Dynamic Distribution Group:

$ExchDDG = Get-DynamicDistributionGroup -Identity “ExchDDG”

Get-Recipient -Filter $ExchDDG.RecipientFilter

 Bulk Recipient Management
 Thus far you have seen how to create and modify various Recipient objects in Exchange Server 2007.
Often, however, there is need to create or modify multiple objects at the same time or provide reporting
from various objects. In earlier versions of Exchange, most operations of this kind were accomplished
using scripts, bat files, or tools specifically for bulk editing such as Admodify. When it comes to working
with multiple objects in Exchange Server 2007, most operations are fairly easy to perform from the
Exchange Management Shell, sometimes in a single - line shell command. The pipeline can be used
effectively to redirect the output of one command into another. For complex bulk management
operations, scripts can also be used based on the Exchange Management Shell.

 In this section, you explore scenarios where you can use the Exchange Management Shell to perform
bulk operations. This is by no means an exhaustive list because we find new ways to accomplish various
tasks on a daily basis. Not to be forgotten is the use of templates, which can prove very useful when
configuring identical properties on objects. The following cmdlets are discussed in this section:

❑ Import-CSV

❑ New-Mailbox

❑ Set-Mailbox

❑ Enable-Mailbox

❑ Get-User

❑ Get-MailboxStatistics

c04.indd 130c04.indd 130 12/17/07 5:27:40 PM12/17/07 5:27:40 PM

Chapter 4: Working with User and Group Objects

131

Figure 4-33

 Bulk Creating Mailboxes
 You can create new mailboxes using the New-Mailbox cmdlet as described earlier in this chapter.
Sometimes, however, an administrator may be asked to create a large number of user mailboxes based
on a comma - separated value spreadsheet. How can you accomplish this with minimal effort?
Fortunately, the Import-CSV cmdlet is helpful here. In this case you can easily import the CSV file and
use the New-Mailbox cmdlet to quickly create the mailboxes.

 So, assume after a job fair that a company ’ s representative passes the following spreadsheet for new
hires starting the following Monday. The administrator would have to create their mailboxes and
generate their email addresses based on the list in Figure 4 - 33 .

 The first step is to verify that the CSV file is in a format you can import from. You use the Import-CSV
cmdlet and specify the CSV file. You should have an output showing the list of new hires correctly
displayed. Next, as discussed earlier in the chapter, you create a temporary password that can be
changed by the users at first logon. These steps are shown in Figure 4 - 34 .

c04.indd 131c04.indd 131 12/17/07 5:27:40 PM12/17/07 5:27:40 PM

Part I: PowerShell for Exchange Fundamentals

132

Figure 4-34

 Notice that next we passed the output of the Import-CSV cmdlet to the New-Mailbox cmdlet in such a
way that it loops through each new hire creating the mailbox with the parameters specified. In doing this
the ForEach statement came in handy. Finally, we verified that the mailboxes were created.

 Now imagine that these new hires numbered 100 or greater. You now begin to see how much time the
Exchange Management Shell can save the administrator.

c04.indd 132c04.indd 132 12/17/07 5:27:41 PM12/17/07 5:27:41 PM

Chapter 4: Working with User and Group Objects

133

 Working with Templates
 Now suppose that these mailboxes were to be created with specific settings; for example, users in the
Engineering department were to have a larger email SendQuota than those in the Finance department.
Creating mailboxes to these specifications could become overwhelming. Here is where the use of
templates comes in handy. The Exchange Management Shell lets you use templates by supporting the
 TemplateInstance parameter on most cmdlets. The administrator can create a template for each
department, then create the users based on this template. To accomplish this, first you create a template
user for the Engineering department using the New-Mailbox cmdlet, and next you use the
Set-Mailbox cmdlet to customize the user settings as desired. Your next step is to assign a variable to
the template user created. These steps are shown in Figure 4 - 35 .

Figure 4-35

 Now that you ’ ve created your template, you return back to your CSV file. This time it ’ s another set of
new hires into various departments provided in the NewHire1.csv file shown in Figure 4 - 36 . You need
to filter the CSV file to show just the users from the Engineering department. You can do that using
either the Filter parameter or the Where-object cmdlets; here we used the latter:

 [PS] C:\ > Import-Csv newhire1.csv | where {$_.department -eq ‘Engineering’}

c04.indd 133c04.indd 133 12/17/07 5:27:41 PM12/17/07 5:27:41 PM

Part I: PowerShell for Exchange Fundamentals

134

 You can assign this to a variable called $Engineering :

[PS] C:\ > $Engineering = Import-Csv newhire1.csv | where {$_.department -eq
‘Engineering’}

 Now you can create the users based on the $TemplateEngineering template using the
 TemplateInstance parameter. These steps are shown in Figure 4 - 37 .

 The users created based on the Engineering template all have the same value for the attributes shown.

 Another way to bulk create mailboxes is to specify how many mailboxes to create using dotted notation
and use the ForEach looping expression as an input into the New-Mailbox cmdlet. The following
command quickly creates 2500 mailboxes:

[PS] C:\ > 1..2500 | ForEach { New-Mailbox -name “PSTest$_” -alias “PSTest$_” -
UserPrincipalName PSTest$_@ExchangeExchange.local -password $Password -database
 “Mailbox Database” -OrganizationUnit ADUsers }

Figure 4-36

c04.indd 134c04.indd 134 12/17/07 5:27:41 PM12/17/07 5:27:41 PM

Chapter 4: Working with User and Group Objects

135

Figure 4-37

 Bulk - Enabling Existing Users
 To bulk - enable existing users, you simply create a filter to get the required users to be bulk - enabled and
pass the output of the command to the Enable-Mailbox cmdlet.

 To demonstrate this, create a few users in Active Directory. You can take advantage of the Net User
command, which has been available in the command prompt. If you need help using this command
simply type Net help net user in the Management Shell:

[PS] C:\ > 1..100 | ForEach { Net User “PowerShell$_” Pswd123 /ADD /Domain }

c04.indd 135c04.indd 135 12/17/07 5:27:42 PM12/17/07 5:27:42 PM

Part I: PowerShell for Exchange Fundamentals

136

 Next you can use the Get-User cmdlet to list all 100 PowerShell users created. To avoid listing all the
users in the shell, you simply assign this output to a variable and pass it to the Enable-Mailbox cmdlet.
This is shown Figure 4 - 38 . Note that the screen was truncated so as not to show all 100 PowerShell users
mailbox - enabled.

Figure 4-38

 Remember, you can always create a filter with PowerShell to filter existing users that are not mailbox -
 enabled and pass that output to the Enable-Mailbox cmdlet.

 Bulk Modifying Mailbox Attributes
 Now back to the new hires. Using that as an example, you can easily modify mailbox settings for the
users by using the Set-Mailbox cmdlet. In Figure 4 - 39 we first retrieve all the new hires and set bulk
modify their MaxSendSize and ProhibitSendQuota settings.

 Using this technique or pattern you can bulk modify common attributes on Recipient objects in
Exchange Server 2007.

 Bulk Reconnect Mailboxes
 Mailboxes that were disconnected could be reconnected using the following command. The property to
search for is disconnectdate that will not be Null . Using the Get-MailboxStatistics cmdlet, loop
through each user mailbox checking if its ’ disconnect date is anything other than null. If it has a time
stamp, reconnect the mailbox to the database it was previously associated with:

Get-MailboxStatistics -GK-HCM | ForEach { $_.Name | Where { $_.DisconnectDate -
NotLike {} } } | ForEach { Connect-Mailbox -Identity $_.DisplayName -Database
$_.DatabaseName}

c04.indd 136c04.indd 136 12/17/07 5:27:42 PM12/17/07 5:27:42 PM

Chapter 4: Working with User and Group Objects

137

Figure 4-39

 There are a number of available scripts from Microsoft on Recipient Management. These are for the most
part single - line Exchange Management Shell commands to assist with bulk management. See
 microsoft.com/technet/scriptcenter/scripts/message/exch2007/default.mspx?mfr=true .

 Summary
 Thus far, we have identified the user and group object types available in Exchange Server 2007 and
reviewed a key parameter used to distinguish these Recipient types: the RecipientTypeDetails . With
the many cmdlets available to manipulate Recipient types, the Exchange Management Shell enables you
carry out various operations on these Recipients, some of which are not available in the Management
Console. The limit to the number of operations on user and group objects with the Management Shell is
enormous and you will find yourself discovering new ways to create and modify objects in the
Management Shell.

c04.indd 137c04.indd 137 12/17/07 5:27:42 PM12/17/07 5:27:42 PM

c04.indd 138c04.indd 138 12/17/07 5:27:43 PM12/17/07 5:27:43 PM

 Public Folders

 Before Exchange 2007 was released there was much discussion about the fate of public
folders. Was it finally time to remove public folders from Exchange? Public folders can be an
 administrator ’ s nightmare because they tend to grow large in size, and can be difficult to manage.
Also, Microsoft suggests Microsoft Office SharePoint Server as the path for migration (http://
msdn2.microsoft.com/en - us/library/aa579360.aspx). On the other hand, public folders
still offer features that other solutions do not; one example is data replication.

 There are very few changes to the core public - folder architecture in Exchange Server 2007. On the
other hand, there is good news for administrators with Exchange Server 2007 ’ s release. Exchange
Server 2007 removed the hard requirement for new installations to have public folders. Of course,
this depends on fully deploying the new Office Outlook 2007 client. As long as there are prior
 Outlook client versions, public folders are required for system folders (that is, calendar free/busy,
offline address book); I will show a method of removing public folders once all clients are
upgraded.

 Unlike all previous versions of Exchange, prior to Service Pack 1 there was no public folder
 management in the GUI, so all public folder management must be done through PowerShell.

 It is also possible to use a free third - party utility called PFDavAdmin for graphical
administration.

 This chapter discusses:

❑ Database Administration

❑ Working with Permissions

❑ Folder and Content Administration

c05.indd 139c05.indd 139 12/17/07 3:29:54 PM12/17/07 3:29:54 PM

Part I: PowerShell for Exchange Fundamentals

140

 Database Administration
 The beginning is always a good place to start, and with public folders, that would be creating the data
store. Although database administration is similar to working with mailbox databases, public folders
have their own set of cmdlets. This section explores how to use the following cmdlets:

❑ Get-PublicFolderDatabase

❑ New-PublicFolderDatabase

❑ Remove-PublicFolderDatabase

❑ Set-PublicFolderDatabase

 Installing Public Folders
 In a new installation of Exchange 2007, the setup routine asks whether there are any client computers
running Outlook 2003 or earlier. If you select Yes, setup creates a public folder database on the Mailbox
server. You can add a public folder database later if it becomes a requirement after the initial installation.
Note that in certain continuous cluster configurations it is not possible to install a public folder database
on the clustered mailbox server. Chapter 12 explains what the limitations are in this scenario.

 To install public folders later, create the database and then configure the Offline Address Book (OAB) for
public folder distribution. You set this option in the Exchange Management Console (EMC) under
Offline Address Book Properties in the Mailbox Organization Configuration section. Figure 5 - 1 shows
the dialog box in the EMC where this setting is configured.

 You must restart the Microsoft Exchange Information Store service before Outlook 2003 and earlier
 clients will be able to connect to the public folder.

 Creating a Public Folder Database
 Creating a public folder database with the Exchange Management Console (EMC) is possible, but
 scripting it is much more fun! Use the cmdlet New-PublicFolderDatabase to create a new public
folder database:

New-PublicFolderDatabase -Name < String > -StorageGroup
 < StorageGroupIdParameter > [-CopyEdbFilePath < EdbFilePath >]
[-DomainController < Fqdn >] [-EdbFilePath < EdbFilePath >] [-HasLocalCopy
 < $true | $false >] [-TemplateInstance < PSObject >]

 For example, this cmdlet creates a new public folder database on the test server:

New-PublicFolderDatabase -Name “Public folder Database” -StorageGroup “Second
Storage Group” -EdbFilePath “C:\Program Files\Microsoft\Exchange\Mailbox\Second
Storage Group\Public folder
Database.edb”

 Creating a public folder database is fairly straightforward. The two required parameters are Name and
 StorageGroup . The HasLocalCopy parameter is used to create a Local Continuous Replication (LCR)
copy of the database. You can enable LCR if this is the only public folder database in the organization.

c05.indd 140c05.indd 140 12/17/07 3:29:55 PM12/17/07 3:29:55 PM

Chapter 5: Public Folders

141

 It is not possible to create more than one public folder database on a mailbox server. Trying to create
additional databases will result in the following error:

A Public folder database already exists on the server that you specified. Each
server can contain a maximum of one Public folder database. Public folder
database: “pub”; Specified server: “MB900”.

 It is also possible to pipe the StorageGroup parameter combining the Get-MailboxDatabase and
 New-PublicFolderDatabase cmdlets:

New-PublicFolderDatabase -Name pub -StorageGroup “MBX\First Storage Group”
Get-MailboxDatabase -server MBX | Set-MailboxDatabase -
PublicFolderDatabase “MBX\First Storage Group\pub”

 What ’ s going on in this example? The New-PublicFolderDatabase cmdlet takes two parameters. The
first is the database name for the new public folder, and the second is the storage group location
 (consisting of the server name and storage group name).

 Next, the script sets all of the mailbox databases ’ public folder database property to the newly created
public folder database.

Figure 5-1

c05.indd 141c05.indd 141 12/17/07 3:29:55 PM12/17/07 3:29:55 PM

Part I: PowerShell for Exchange Fundamentals

142

 Get/Set Public Folder Database Information
 Now that a public folder database has been created, this section shows how to get and set various
parameters on the database. This is accomplished with Get-PublicFolderDatabase and
 Set-PublicFolderDatabase :

Get-PublicFolderDatabase [-Identity < DatabaseIdParameter >] [-DomainController
 < Fqdn >] [-IncludePreExchange2007 < SwitchParameter >]
[-Status < SwitchParameter >] [< CommonParameters >]
Get-PublicFolderDatabase -Server < ServerIdParameter > [-DomainController < Fqdn >]
[-IncludePreExchange2007 < SwitchParameter >] [-Status
 < SwitchParameter >] [< CommonParameters >]
Get-PublicFolderDatabase -StorageGroup < StorageGroupIdParameter >
[-DomainController < Fqdn >] [-IncludePreExchange2007 < SwitchParameter >]
[-Status < SwitchParameter >] [< CommonParameters >]

 Running the Get-PublicFolderDatabase without any parameters returns a list of all the servers with
public folder stores in the organization. The IncludePreExchange2007 and Status parameters are
demonstrated next.

 To include pre - Exchange 2007 servers, add the switch IncludePreExchange2007 .

 Figure 5 - 2 is an example of the detail returned when run against a specific server.

Figure 5-2

c05.indd 142c05.indd 142 12/17/07 3:29:55 PM12/17/07 3:29:55 PM

Chapter 5: Public Folders

143

Figure 5-3

 The Set-PublicFolderDatabase cmdlet is used to configure a public folder database. Its syntax is the
following:

Set-PublicFolderDatabase -Identity < DatabaseIdParameter >
[-AllowFileRestore < $true | $false >] [-Confirm [< SwitchParameter >]]
[-CustomReferralServerList < MultiValuedProperty >] [-DeletedItemRetention
 < EnhancedTimeSpan >] [-DomainController < Fqdn >]
[-EventHistoryRetentionPeriod < EnhancedTimeSpan >] [-IssueWarningQuota
 < Unlimited >] [-ItemRetentionPeriod < Unlimited >] [-MaintenanceSchedule
 < Schedule >] [-MaxItemSize < Unlimited >] [-MountAtStartup < $true | $false >]
[-Name < String >] [-ProhibitPostQuota < Unlimited >]
[-QuotaNotificationSchedule < Schedule >] [-ReplicationMessageSize
 < ByteQuantifiedSize >] [-ReplicationPeriod < UInt32 >] [-ReplicationSchedule
 < Schedule >] [-RetainDeletedItemsUntilBackup < $true | $false >]
[-UseCustomReferralServerList < $true | $false >] [-WhatIf
[< SwitchParameter >]]

Set-PublicFolderDatabase [-AllowFileRestore < $true | $false >] [-Confirm
[< SwitchParameter >]] [-CustomReferralServerList < MultiValuedProperty >]
[-DeletedItemRetention < EnhancedTimeSpan >] [-DomainController < Fqdn >]
[-EventHistoryRetentionPeriod < EnhancedTimeSpan >] [-Instance
 < PublicFolderDatabase >] [-IssueWarningQuota < Unlimited >]
[-ItemRetentionPeriod < Unlimited >] [-MaintenanceSchedule < Schedule >]
[-MaxItemSize < Unlimited >] [-MountAtStartup < $true | $false >] [-Name
 < String >] [-ProhibitPostQuota < Unlimited >] [-QuotaNotificationSchedule

 Note that the Mounted parameter is blank. Supply the Status parameter to get information about
 database state and backup information, as shown in Figure 5 - 3 .

(continued)

c05.indd 143c05.indd 143 12/17/07 3:29:56 PM12/17/07 3:29:56 PM

Part I: PowerShell for Exchange Fundamentals

144

 < Schedule >] [-ReplicationMessageSize < ByteQuantifiedSize >]
[-ReplicationPeriod < UInt32 >] [-ReplicationSchedule < Schedule >]
[-RetainDeletedItemsUntilBackup < $true | $false >]
[-UseCustomReferralServerList < $true | $false >] [-WhatIf
[< SwitchParameter >]]

 The Set-PublicFolderDatabase cmdlet shares many similar options to the private database counter-
part. ProhibitPostQuota , IssueWarningQuota , and QuotaNotificationSchedule are parameters
related to user quotas for public folders.

 The parameters UseCustomReferralServerList and CustomReferralServerList control how
 clients locate folders. The CustomReferralServerList assigns costs to individual servers with any
positive number. Multiple servers can be listed by separating the server names with commas.

 For example, to assign a weight of 10 to server PFMB903 and a weight of 5 to server PFMB902 the
 CustomReferralServerList would look like this:

“PFMB902:5”,”PFMB903:10”

 Removing a Public Folder Database
 The process for removing a public folder database is also a simple command. However, unless all
 replicas and data have been removed, the deletion fails. In addition, any mailbox databases referencing
the public folder must be updated to another public folder server. If this is the last public folder database
in the organization, special commands must be used. You examine how to manage public folder replica-
tion in the following section. The syntax for Remove-PublicFolderDatabase is

Remove-PublicFolderDatabase -Identity < DatabaseIdParameter >
[-DomainController < Fqdn >] [-RemoveLastAllowed < SwitchParameter >]

 Using Remove-PublicFolderDatabase does not delete the actual database (.edb) file and other
associated log files; you must manually remove them.

 Working with Permissions
 Public folder permissions are separated into Client and Administrator permissions. Client permissions are
typically managed with the Outlook client by users. These control who has access to the structure and
content of the folder. Administrator permissions, on the other hand, control things like replication
and control quotas. The following cmdlets are used to control public folder permissions:

❑ Add-PublicFolderAdministrativePermission

❑ Get-PublicFolderAdministrativePermission

❑ Remove-PublicFolderAdministrativePermission

❑ Add-PublicFolderClientPermission

❑ Get-PublicFolderClientPermission

❑ Remove-PublicFolderClientPermission

(continued)

c05.indd 144c05.indd 144 12/17/07 3:29:56 PM12/17/07 3:29:56 PM

Chapter 5: Public Folders

145

 Client Folder Permissions
 Individual client permissions are combined to form roles. For example, Authors can create items, read
items, and see the folder, but they can only edit and delete their own items. You can manage these rights
with the Outlook client. Select the public folder and right - click. Select Properties and choose the
 Permissions tab. The dialog box is shown in Figure 5 - 4 .

Figure 5-4

 That ’ s great for users to use, but administrators can also manage client permissions with PowerShell.
One advantage of PowerShell is that an administrator can quickly make bulk changes. A typical example
is to grant Active Directory group permissions on every folder:

Get-PublicFolder \ -Recurse -ResultSize unlimited | Add-
PublicFolderClientPermission -User “Public folder Supergroup” -AccessRights
PublishingEditor

c05.indd 145c05.indd 145 12/17/07 3:29:56 PM12/17/07 3:29:56 PM

Part I: PowerShell for Exchange Fundamentals

146

 This script first gets all the public folder in the IPM_Subtree and overrides the default result size of
10,000 folders. The public folder object is then piped to the Add-PublicFolderClientPermission
cmdlet where it grants the AD mail - enabled security group named “ Public Folder Supergroup ” the
 Publishing Editor rights. Publishing Editor grants full rights to the folder, with the exception of setting
the group as the folder owner.

 Client Folder Permissions Scripts
 Four scripts are located in the Scripts directory, by default located in C:\Program Files\Microsoft\
Exchange Server\Scripts . The scripts are

❑ AddUsersToPFRecursive : Adds a user to a role in a given public folder and its children. It
requires the user, permissions, and the top folder to start from.

❑ ReplaceUserWithUserOnPFRecursive : Essentially swaps the same permissions from an
 existing user to a new user for a given folder and its children.

❑ ReplaceUserPermissionOnPFRecursive : Changes an existing user ’ s permissions with new
permissions for a given folder and its children.

❑ RemoveUserFromPFRecursive : Removes an existing user ’ s permissions from a given folder
and its children.

 To run the scripts use a .\ in front of the script name calling the script from within the folder where the
script resides, for example, .\AddUsersToPFRecursive.ps1 .

 Administrative Folder Permissions
 Administrative permissions are needed for setting properties like replication, ACLs, and quotas. By
default, Exchange Server administrators have full rights, or the AllExtendedRights permission.
 Following is a list of all of the access rights available for administrative access to public folders:

❑ None

❑ ModifyPublicFolderACL

❑ ModifyPublicFolderAdminACL

❑ ModifyPublicFolderDeletedItemRetention

❑ ModifyPublicFolderExpiry

❑ ModifyPublicFolderQuotas

❑ ModifyPublicFolderReplicaList

❑ AdministerInformationStore

❑ ViewInformationStore

❑ AllExtendedRights

 If you forget the possible Access Rights values, put anything in the AccessRights parameter and the
error outputs a list.

c05.indd 146c05.indd 146 12/17/07 3:29:56 PM12/17/07 3:29:56 PM

Chapter 5: Public Folders

147

 Get, set, and remove administrative folder permissions with these three cmdlets:

❑ Get-PublicFolderAdministrativePermission

❑ Add-PublicFolderAdministrativePermission

❑ Remove-PublicFolderAdministrativePermission

 The first, Get-PublicFolderAdministrativePermission , is shown here:

Get-PublicFolderAdministrativePermission -Identity < PublicFolderIdParameter >
[-DomainController < Fqdn >] [-Server < ServerIdParameter >] [-User < Security
PrincipalIdParameter >]
[< CommonParameters >]
Get-PublicFolderAdministrativePermission -Identity PublicFolderIdParameter >
[-DomainController < Fqdn >] [-Owner
 < SwitchParameter >] [-Server < ServerIdParameter >] [< CommonParameters >]

 The cmdlet returns the Isinherited parameter that shows whether the permission comes from a
 parent object. This is useful in troubleshooting permissions problems.

 Add-PublicFolderAdministrativePermission is shown here:

Add-PublicFolderAdministrativePermission -Identity < PublicFolderIdParameter > -
AccessRights < Collection > -User < SecurityPrincipalIdParameter > [-Deny
 < SwitchParameter >] [-DomainController < Fqdn >] [-InheritanceType < None | All |
Descendents | SelfAndChildren | Children >] [-Server < ServerIdParameter >]
[< CommonParameters >]

Add-PublicFolderAdministrativePermission -Identity < PublicFolderIdParameter > -
Owner < SecurityPrincipalIdParameter > [-DomainController < Fqdn >] [-Server
 < ServerIdParameter >] [< CommonParameters >]
Add-PublicFolderAdministrativePermission [-Identity < PublicFolderIdParameter >] -
Instance PublicFolderAdministrativeAceObject > [-AccessRights < Collection >] [-Deny
 < SwitchParameter >] [-DomainController < Fqdn >] [-InheritanceType < None | All |
Descendents | SelfAndChildren | Children >] [-Server < ServerIdParameter >] [-User
 < SecurityPrincipalIdParameter >] [< CommonParameters >]

 AccessRights are rights specific to the Active Directory object itself. ModifyPublicFolderACL ,
 ViewInformationStore , ModifyPublicFolderQuotas , and AllExtendedRights are examples of
AccessRights.

 InheritanceType controls how children objects have their rights set. Typically rights flow down to all
descendents, but this behavior can be overridden by setting this parameter. The valid parameters are:

❑ None indicates no inheritance. The security information only applies to the object.

❑ All indicates that the security information applies to the object, its children, and its children ’ s
descendents.

❑ Descendents indicates that the security information applies only to the object ’ s children and
their descendents. It does not apply to the object itself.

c05.indd 147c05.indd 147 12/17/07 3:29:57 PM12/17/07 3:29:57 PM

Part I: PowerShell for Exchange Fundamentals

148

❑ SelfAndChildren indicates that the security information applies to only the object and its
immediate children. It does not include the children ’ s descendents.

❑ Children indicates that the security information applies only to the object ’ s immediate
 children. It does not apply to the object, or the object ’ s children ’ s descendents.

 Here is an example of assigning permissions that grant the user Jeffrey Rosen permissions to modify all
properties on the Departments folder:

Add-PublicFolderAdministrativePermission -Identity \Departments -User
 “Jeffrey Rosen” -AccessRights AllExtendedRights

 It is also possible to deny rights by adding the Deny switch parameter. The following cmdlet denies
 Jeffrey the ability to modify public folder quotas for the Departments folder:

Add-PublicFolderAdministrativePermission -Identity \Departments -User
“Jeffrey Rosen” -AccessRights ModifyPublicFolderQuotas -Deny
The third, Remove-PublicFolderAdministrativePermission, is shown here: Remove-
PublicFolderAdministrativePermission -Identity < PublicFolderIdParameter > -
AccessRights < Collection > -User < SecurityPrincipalIdParameter > [-Deny
 < SwitchParameter >] [-DomainController < Fqdn >] [-InheritanceType < None | All |
Descendents | SelfAndChildren | Children >] [-Server < ServerIdParameter >]
[< CommonParameters >]

Remove-PublicFolderAdministrativePermission [-Identity < PublicFolderIdParameter >]
-Instance PublicFolderAdministrativeAceObject > [-AccessRights < Collection >] [-Deny
 < SwitchParameter >] [-DomainController < Fqdn >] [-InheritanceType < None | All |
Descendents | SelfAndChildren | Children >] [-Server < ServerIdParameter >] [-User
 < SecurityPrincipalIdParameter >] [< CommonParameters >]

 The parameters for Remove-PublicFolderAdministrativePermission have the same options as the
 Add-PublicFolderAdministrativePermission cmdlet.

 Top - Level Folders
 By default, creating or removing top - level public folders, or root folders, is restricted to administrators.
There are two approaches to allow users to create folders at the root. One scenario is an administrator
can create the root folders and grant permissions to users the ability to create subfolders. This can be
done with the Outlook client or with the PowerShell Add-PublicFolderClientPermission cmdlet:

Add-PublicFolderClientPermission -Identity < PublicFolderIdParameter > -AccessRights
 < Collection > -User < PublicFolderUserIdParameter > [-DomainController < Fqdn >]
[-Server < ServerIdParameter >]
[< CommonParameters >]

 For example:

Add-PublicFolderClientPermission -Identity \SampleFolder -User
jeffreyrosen -AccessRights owner

c05.indd 148c05.indd 148 12/17/07 3:29:57 PM12/17/07 3:29:57 PM

Chapter 5: Public Folders

149

 Another approach is to grant users the rights to create top - level folders. This can be done with
 PowerShell or with an Active Directory editing tool, such as ADSI Edit. The command to grant permis-
sions requires the distinguished name (DN) of the public folder configuration object. The DN can be
found in the Configuration partition in Active Directory, and will look similar to the following:

CN=Public folderPublic foldersPublic folders,CN=Folder Hierarchies,CN=Exchange
Administrative Group
 (FYDIBOHF23SPDLT),CN=Administrative Groups,CN= < company > ,CN=Microsoft
Exchange,CN=Services,CN=Configuration,DC= < company > ,DC=com

 The cmdlet to change top - level permissions is Add-ADPermission :

Add-ADPermission -Identity < ADRawEntryIdParameter > -User
 < SecurityPrincipalIdParameter > [-AccessRights < ActiveDirectoryRights[] >]
[-ChildObjectTypes < ADSchemaObjectIdParameter[] >] [-Deny < SwitchParameter >]
[-DomainController < Fqdn >] [-ExtendedRights < ExtendedRightIdParameter[] >]
[-InheritanceType < None | All | Descendents | SelfAndChildren | Children >]
[-InheritedObjectType < ADSchemaObjectIdParameter >] [-Properties
 < ADSchemaObjectIdParameter[] >][< CommonParameters >]

 For example:

Add-ADPermission -id “CN=Public folders,CN=Folder Hierarchies,CN=Exchange
Administrative Group (FYDIBOHF23SPDLT),CN=Administrative Groups,CN=contosolab,
CN=Microsoft Exchange,CN=Services,CN=Configuration,DC=contosolab,DC=com” -User
jeffreyrosen -ExtendedRights ms-exch-create-top-level-public-folder -
AccessRights readproperty,GenericExecute

 Exchange Server 2007 Service Pack 1 adds a new administrator role, Exchange Public folder
 Administrators. Users assigned this role have administrative permissions to manage all public folders,
they are automatically granted the Create top - level public folder extended right, and they can manage
most other public folder settings.

 Folder and Content Administration
 One of the advantages of public folders in comparison to other solutions is its replication model. The
replication is set by an administrator and is totally transparent to Outlook clients. The following list
 presents the cmdlets related to folder and content administration:

❑ Get-PublicFolder

❑ New-PublicFolder

❑ Remove-PublicFolder

❑ Set-PublicFolder

❑ Update-PublicFolder

❑ Update-PublicFolderHierarchy

❑ Get-PublicFolderStatistics

c05.indd 149c05.indd 149 12/17/07 3:29:57 PM12/17/07 3:29:57 PM

Part I: PowerShell for Exchange Fundamentals

150

❑ Disable-MailPublicFolder

❑ Enable-MailPublicFolder

❑ Get-MailPublicFolder

❑ Set-MailPublicFolder

❑ Suspend-PublicFolderReplication

❑ Resume-PublicFolderReplication

 Working with Folders
 Exchange Server 2007 supports two different public folder trees: the IPM_Subtree and the
 Non_IPM_Subtree . The IPM_Subtree is the root that holds folders visible to Outlook clients.
The Non_IPM_ Subtree has the system folders, such as free/busy and offline address book.

Get-PublicFolder [-Identity < PublicFolderIdParameter >] [-DomainController
 < Fqdn >] [-Server < ServerIdParameter >]

Get-PublicFolder [-Identity < PublicFolderIdParameter >] -GetChildren
 < SwitchParameter > [-DomainController < Fqdn >] [-ResultSize < Unlimited >]
[-Server < ServerIdParameter >]

Get-PublicFolder [-Identity < PublicFolderIdParameter >] -Recurse < SwitchParameter >
[-DomainController < Fqdn >] [-ResultSize < Unlimited >]
[-Server < ServerIdParameter >]

 The ResultSize parameter sets the maximum number of results returned by the cmdlet. It has a
 maximum value of 10,000. To return all records, set the value to Unlimited . This parameter can only
be set when used with the Recurse or GetChildren parameters.

 The Recurse switch parameter makes the cmdlet return the folder specified in the Identity parameter,
as well as all of its children.

 The Identity parameter, by default, shows folders in the IPM_Subtree , shown in Figure 5 - 5 .

 To work with the system folders, specify Non_IPM_Subtree as the identity. (See Figure 5 - 6 .)

 Creating and Removing Folders
 Most often, creating folders is done with Outlook. But, there are times when folders need to be created
administratively. The cmdlet to create folders is New-PublicFolder :

New-PublicFolder -Name < String > [-DomainController < Fqdn >] [-Path
 < PublicFolderIdParameter >] [-Server < ServerIdParameter >]
[< CommonParameters >]

 Currently, it is only possible to create mail/post type folders using the New-PublicFolder cmdlet. Only
the Outlook client can create calendar, contact, and other folder types.

c05.indd 150c05.indd 150 12/17/07 3:29:58 PM12/17/07 3:29:58 PM

Chapter 5: Public Folders

151

Figure 5-6

Figure 5-5

c05.indd 151c05.indd 151 12/17/07 3:29:58 PM12/17/07 3:29:58 PM

Part I: PowerShell for Exchange Fundamentals

152

 The following shows how to create a new folder called HR under the departments folder:

New-PublicFolder -Name HR -path \departments

 By default, new folders inherit the settings of their parent.

 The cmdlet to remove folders is Remove-PublicFolder :

Remove-PublicFolder -Identity < PublicFolderIdParameter > [-DomainController < Fqdn >]
[-Recurse < SwitchParameter >] [-Server < ServerIdParameter >]
 [< Common Parameters >]

 Only Identity is a required parameter. The identity can take the form of GUID, distinguished name
(DN), Server\storage group\database name, Server\database name, or Storage groupname\database
name. An easier way to get the folder identity is to combine the Get-PublicFolder with
 Remove-PublicFolder :

Get-PublicFolder \sample | Remove-PublicFolder

Similar to the Get-PublicFolder cmdlet, the Recurse parameter makes the cmdlet
operate on the folder specified in the Identity parameter and all of its children.
This example shows how the Recurse parameter removes the folder named sample, as
well as all of its children folders. Remove-PublicFolder -Identity “\sample” -
Recurse

 Removing Public Folders
 Once all of the email clients are upgraded to Office Outlook 2007, it is possible to remove public folders
from Exchange. First, move any data in the public folders to another system. One alternative to public
folders is Microsoft Office SharePoint Server. There are a number of commercial tools available to
 facilitate a migration. Also, it is important to consider any organizational forms being used. Microsoft
InfoPath is an application that may be used for forms migration. Lastly, reconfigure the OAB to not use
public folders for distribution. Remove the public folder stores by removing all of the replicas using the
 RemoveReplicaFromPFRecursive.ps1 script and allowing time for the information to synchronize.
Additionally, to remove all of the folders from the server run the following cmdlets:

Get-PublicFolder -Server < Servername > -identity “\” -Recurse -ResultSize:unlimited
-ErrorAction:SilentlyContinue | Remove-PublicFolder
Get-PublicFolder -Server < Servername > -identity “\Non_IPM_Subtree” -Recurse -
ResultSize:unlimited -ErrorAction:SilentlyContinue | Remove-PublicFolder

 Finally, you have one public folder store remaining. Run the previous cmdlets to remove any last
remaining folders. Once all of these steps have been completed, the last public folder store can be
removed with PowerShell. It may take some time for the public folder store to complete replication.

 After running the final cmdlet Get-PublicFolderDatabase -Server < Server name > |
Remove-PublicFolderDatabase , the cmdlet returns a confirmation warning, as shown in Figure 5 - 7 .
Understand that once the last folder is removed, only Office Outlook 2007 clients will be able to connect
to Exchange. The cmdlet will not remove the database files; they must be manually deleted.

c05.indd 152c05.indd 152 12/17/07 3:29:58 PM12/17/07 3:29:58 PM

Chapter 5: Public Folders

153

 Replication
 There are two types of public folder replication: hierarchy and data. All of the functionally introduced in
Exchange 2003 for public folder administration was carried over in Exchange 2007 cmdlets.

 One key thing to remember when working with public folders — patience!

 Folder Replication
 The ability to create replicas is essential to maintaining high availability for public folder content.
Many of the parameters are set at the database level, and can be overridden per folder. This includes
 settings such as replication schedule, quotas, and retention period. These parameters are set with the
 Set- PublicFolder cmdlet:

Set-PublicFolder -Identity < PublicFolderIdParameter > [-AgeLimit < EnhancedTimeSpan >]
[-DomainController < Fqdn >] [-HiddenFromAddressListsEnabled < $true|$false >] [-
MaxItemSize < Unlimited >] [-Name < String >] [-PerUserReadStateEnabled < $true |
$false >] [-PostStorageQuota < Unlimited >] [-Replicas < DatabaseIdParameter[] >] [-
ReplicationSchedule < Schedule >] [-RetainDeletedItemsFor < EnhancedTimeSpan >] [-
Server < ServerIdParameter >] [-StorageQuota < Unlimited >] [-UseDatabaseAgeDefaults
 < $true | $false >] [-UseDatabaseQuotaDefaults < $true | $false >] [-
UseDatabaseReplicationSchedule < $true | $false >]
[-UseDatabaseRetentionDefaults < $true | $false >] [< CommonParameters >]

Set-PublicFolder -Identity < PublicFolderIdParameter > [-AgeLimit < EnhancedTimeSpan >]
[-DomainController < Fqdn >] [-HiddenFromAddressListsEnabled < $true|$false >] [-

Figure 5-7

(continued)

c05.indd 153c05.indd 153 12/17/07 3:29:58 PM12/17/07 3:29:58 PM

Part I: PowerShell for Exchange Fundamentals

154

LocalReplicaAgeLimit < EnhancedTimeSpan >] [-MaxItemSize < Unlimited >] [-Name
 < String >] [-PerUserReadStateEnabled < $true | $false >] [-PostStorageQuota
 < Unlimited >] [-Replicas < DatabaseIdParameter[] >] [-ReplicationSchedule < Schedule >]
[-RetainDeletedItemsFor < EnhancedTimeSpan >] [-Server < ServerIdParameter >] [-
StorageQuota < Unlimited >] [-UseDatabaseAgeDefaults < $true | $false >] [-
UseDatabaseQuotaDefaults < $true | $false >] [-UseDatabaseReplicationSchedule < $true
| $false >] [-
UseDatabaseRetentionDefaults < $true|$false >] [< CommonParameters >]

Set-PublicFolder [-AgeLimit < EnhancedTimeSpan >] [-DomainController < Fqdn >] [-
HiddenFromAddressListsEnabled < $true | $false >] [-Instance < PublicFolder >] [-
MaxItemSize < Unlimited >] [-Name < String >] [-PerUserReadStateEnabled < $true|$false >]
[-PostStorageQuota < Unlimited >] [-Replicas < DatabaseIdParameter[] >] [-
ReplicationSchedule < Schedule >] [-RetainDeletedItemsFor < Enhanced TimeSpan >] [-
Server < ServerIdParameter >] [-StorageQuota < Unlimited >] [-UseDatabaseAgeDefaults
 < $true | $false >] [-UseDatabaseQuotaDefaults < $true | $false >] [-
UseDatabaseReplicationSchedule < $true | $false >] [-
UseDatabaseRetentionDefaults < $true | $false >] [< CommonParameters >]

 One of the most common public folder tasks is to add and remove folder replicas. The parameter
 Replicas is a list of the server name and public folder database name for each server. Use the
Get- PublicFolder cmdlet to see the current replicas on a folder:

Get-PublicFolder \replicateme | fl replicas

 For example, to add replicas to both of my test servers for the folder replicateme , the cmdlet is:

Get-PublicFolder \replicateme | Set-PublicFolder -Replicas MBX\PFMB901,
MB902\PFMB902

 It may take some time for the content to begin replication after adding a new replication partner. The
section on reporting shows how to retrieve replication state.

 To remove a replication partner, include all the servers in the Replicas list, except for the server to be
removed. From the previous example, this cmdlet removes the replica on MB902:

Get-PublicFolder \replicateme | Set-PublicFolder -Replicas MBX\PFMB901

 The replication schedule can be in the form of date/time or always. The replicationschedule and the
 UsaDatabaseReplicationSchedule parameters are mutually exclusive.

 In Figure 5 - 8 , the public folder sample has a blank replicationschedule property, and the
 UseDatabaseReplicationSchedule is True .

 First, the replication schedule is set to Monday through Friday. The UseDatabaseReplicationSchedule
is automatically set to False .

(continued)

c05.indd 154c05.indd 154 12/17/07 3:29:59 PM12/17/07 3:29:59 PM

Chapter 5: Public Folders

155

 Next, the replication schedule is set to always . This changes the ReplicationSchedule property
to the full week.

 Setting the schedule to always means data replicates every 15 minutes.

 Public Folder Hierarchy
 The public folder hierarchy contains the structure of every folder in the IPM_Subtree . The hierarchy is
automatically replicated to every server that contains a public folder store. It is possible for a server ’ s
hierarchy to become out of sync. You can force an update with the Update-PublicFolderHierarchy
cmdlets. The cmdlets require a server specified as the source of replication:

Update-PublicFolderHierarchy -Server < ServerIdParameter > [-
DomainController < Fqdn >]

 An example of updating the hierarchy with the server MB901 as the source would be:

Update-PublicFolderHierarchy -Server MB901

Figure 5-8

c05.indd 155c05.indd 155 12/17/07 3:29:59 PM12/17/07 3:29:59 PM

Part I: PowerShell for Exchange Fundamentals

156

 How does this work? The compare-object cmdlet has a parameter for the reference object and one for
the difference object. If the parameter names are not supplied, it assumes the first value is the reference
object. The sub - expression is evaluated, and returns the IPM_Subtree on a given server. There are other
parameters for tweaking the output, such as includeEqual , which returns all lines in both files.

 Stopping Data Replication
 The ability to stop all replication was introduced in Exchange 2003 SP2. If, for example, an administrator
accidentally replicated a public folder with a large amount of data it would be possible to stop replica-
tion before replication traffic could saturate the network. The administrator could remove the incorrect
replication partner and then resume data replication. The Suspend-PublicFolderReplication and
 Resume-PublicFolderReplication cmdlets have the following syntax:

 Suspend-PublicFolderReplication [-DomainController < Fqdn >]
 [< CommonParameters >]

Resume-PublicFolderReplication [-DomainController < Fqdn >]
 [< CommonParameters >]

Figure 5-9

 As noted earlier, view the contents of the hierarchy with the Get-PublicFolder cmdlet. By specifying
the server, it is easy to compare two server ’ s hierarchies. (See Figure 5 - 9 .)

c05.indd 156c05.indd 156 12/17/07 3:29:59 PM12/17/07 3:29:59 PM

Chapter 5: Public Folders

157

 To check the state of replication, use the following cmdlet:

Get-OrganizationConfig | fl heuristics

 The cmdlet will return Heuristics : SuspendFolderReplication if the replication is suspended.

 Public Folder Scripts
 In addition to the Exchange cmdlets, there are four scripts included during setup. The scripts
for public folders make routine tasks even easier. Also, they provide good examples for
building your own scripts. The default location for the following scripts is
C:\Program Files\Microsoft\Exchange Server\Scripts .

❑ AddReplicaToPFRecursive.ps1 : Adds a server to the replication list

❑ RemoveReplicaFromPFRecursive.ps1 : Removes a server from the replication list

❑ MoveAllFeplicas.ps1 : Replaces a server in the replication list

❑ ReplaceReplicaOnPfRecursive.ps1 : Replaces a server in the replication list with a
new server

 RemoveReplicaFromPFRecursive removes a server ’ s folder replicas from a given folder, and all of the
folder ’ s children:

RemoveReplicaFromPFRecursive [-Server < Server Identity >] -
TopPublicFolder < Folder Path > -ServerToRemove < Server Name >

 The following example removes all replicas for server MB902 from the \Departments folder and its
children. It is operated against the other server that has a public folder store.

RemoveReplicaFromPFRecursive -Server MBX -TopPublicFolder \Departments
-ServerToRemove MB902

 A slight variation is the script ReplaceReplicaOnPfRecursive , which replaces a server with a new
server for a given folder, and all of the folder ’ s children:

ReplaceReplicaOnPfRecursive [-Server < Server Identity >]
-TopPublicFolder < Folder Path >
-ServerToRemove < Server Identity > -ServerToAdd < Server Identity >

 Now, replace the server MBX with MB903 for all folders from the \Departments folder and its children.
It is operated against the MBX server.

ReplaceReplicaOnPfRecursive -Server MBX -TopPublicFolder \Departments -
ServerToRemove MB902 -ServerToAdd MB903

c05.indd 157c05.indd 157 12/17/07 3:29:59 PM12/17/07 3:29:59 PM

Part I: PowerShell for Exchange Fundamentals

158

 The next script moves all replicas, including system folders, to a new server:

MoveAllReplicas -Server < Server Identity > -NewServer < Server Identity >

 To move all replicas from MBX to MB902, run the following script:

MoveAllReplicas -Server MBX -NewServer MB902

 Finally, AddReplicaToPFRecursive adds a server to the replication list for a folder, and all of its
children:

AddReplicaToPFRecursive [-Server < Server Identity >] -ServerToAdd < Server
 Identity > -TopPublicFolder < Folder Path >

 The following example adds server MB902 to the \Departments folder and its children:

AddReplicaToPFRecursive -ServerToAdd MB902 -TopPublicFolder \Departments

 Mail - Enabling
 Just as in prior versions of Exchange, it is possible to enable public folders to receive email messages. The
public folder must be created before it can be mail enabled. The cmdlet for enabling public folders is
 Enable-MailPublicFolder :

Enable-MailPublicFolder -Identity < PublicFolderIdParameter > [-DomainController
 < Fqdn >] [-HiddenFromAddressListsEnabled < $true | $false >] [-Server
 < ServerIdParameter >] [< CommonParameters >]

 Hide the folder from the global address list by setting the parameter
HiddenFromAddressListsEnabled to true .

 Reporting
 Unlike the hierarchy tree, which is the same across all public folder servers, running the
Get-PublicFolderStatistics cmdlet generates information only for the folders for which
the server has a replica.

Get-PublicFolderStatistics [-Identity < PublicFolderIdParameter >]
[-DomainController < Fqdn >] [-Server < ServerIdParameter >] [< CommonParameters >]

 The following example shows how both of my test servers have different replicas of folders. This
 command outputs the item count and last access time. (See Figure 5 - 10 .)

Get-PublicFolderStatistics -server MB902
Get-PublicFolderStatistics -server MBX

c05.indd 158c05.indd 158 12/17/07 3:30:00 PM12/17/07 3:30:00 PM

Chapter 5: Public Folders

159

 The only folder replicated across both servers is \replicateme . It is possible to compare the itemcount
property to see if they match.

 The following provides more detail, such as last modification time, to specify the identity of a folder.
(See Figure 5 - 11 .)

Get-PublicFolderStatistics -server MB902 -identity \replicateme | fl

Figure 5-10

c05.indd 159c05.indd 159 12/17/07 3:30:00 PM12/17/07 3:30:00 PM

Part I: PowerShell for Exchange Fundamentals

160

 Summary
 Even though new deployments may be able to run an Exchange environment without public folders, it
will be some time before there is complete independence for most organizations. For administrators
upgrading from previous versions, managing public folders can prove to be challenging.

 This chapter covered all of the tasks an administrator needs to do with public folders. It began creating
the public folder database. Once the database was created, the chapter explained security and permis-
sions, as well as how to configure the top - level folders. Next, the chapter covered working with folders
and content. This section talked about replication to ensure availability of the folder hierarchy and con-
tent. A number of scripts are included on the Exchange install DVD that make it easier to work with
folder replicas. Finally, the chapter covered mail - enabling and reporting on folders. Even though Service
Pack 1 adds public folder administration in to the GUI management console, this chapter demonstrated
the flexibility of working with PowerShell.

Figure 5-11

c05.indd 160c05.indd 160 12/17/07 3:30:00 PM12/17/07 3:30:00 PM

Part II

Working with Server
Roles

Chapter 6: Confi guring the Client Access Server Role

Chapter 7: Confi guring the Hub Transport Role

Chapter 8: Confi guring the Mailbox Server Role

Chapter 9: Confi guring the Edge Transport Server Role

Chapter 10: Unifi ed Messaging

c06.indd 161c06.indd 161 12/17/07 3:32:18 PM12/17/07 3:32:18 PM

c06.indd 162c06.indd 162 12/17/07 3:32:19 PM12/17/07 3:32:19 PM

 Configuring the Client
Access Server Role

 The Client Access Server (CAS) plays a similar role to the Exchange Server 2000 or 2003
Front - End computer. It provides client access to Office Outlook Web Access (OWA), Exchange
ActiveSync (EAS), Outlook Anywhere, IMAP4, and POP3. The CAS also provides new services —
 Autodiscover, the Availability Service, and Exchange Web Services. Autodiscover will automati-
cally create Office Outlook 2007 profiles for users by just entering their email address and
password. The Availability Service provides calendaring information, such as free/busy for
Office Outlook 2007 clients. Exchange Web Services is an interface for building applications
 integrated with Exchange with the Microsoft .NET platform.

 Unlike the Exchange Server 2003 front - end server, the CAS handles more processing to lighten
the work done by the Mailbox role. There must be at least one CAS deployed in the organization,
and at least one per Active Directory site where there is a Mailbox role. This chapter helps an
administrator understand and configure the services provided by the CAS.

This chapter covers the following topics:

❑ Working with user settings

❑ Configuring POP3 and IMAP4

❑ Configuring certificates

❑ Working with Autodiscover, proxy, and redirection

❑ Working with Outlook Anywhere

❑ Working with the Offline Address Book

❑ Working with LinkAccess for Outlook Web Access

c06.indd 163c06.indd 163 12/17/07 3:32:19 PM12/17/07 3:32:19 PM

Part II: Working with Server Roles

164

 User Settings
 This section explores user settings related to client access. The cmdlets used are:

❑ Set-CASMailbox

❑ Get-Mailbox

❑ Get-CASMailbox

 The Set-CASMailbox cmdlet has a many parameters to provide granular customization per user.
Many of the parameters are used to enable or disable Outlook Web Access features. For example,
 administrators can turn off the ability to access their calendar or tasks. This can be useful in
 organizations that provide mail capabilities to a segment of users, but do not want to allow those users
calendaring ability. Also, it is a best practice to limit the functionality a mail - enabled service account has.
The Set-CASMailbox cmdlet has the following syntax:

Set-CASMailbox -Identity < MailboxIdParameter > [-ActiveSyncAllowedDeviceIDs
 < MultiValuedProperty >] [-ActiveSyncEnabled < $true | $false >]
[-ActiveSyncMailboxPolicy < MailboxPolicyIdParameter >]
[-ActiveSyncDebugLogging < Nullable >] [-DisplayName < String >]
[-DomainController < Fqdn >] [-EmailAddresses < ProxyAddressCollection >]
[-HasActiveSyncDevicePartnership < $true | $false >] [-ImapEnabled < $true |
$false >] [-ImapMessagesRetrievalMimeFormat < TextOnly | HtmlOnly |
HtmlAndTextAlternative | TextEnrichedOnly | TextEnrichedAndTextAlternative
| BestBodyFormat >] [-ImapUseProtocolDefaults < $true | $false >]
[-MAPIBlockOutlookNonCachedMode < $true | $false >]
[-MAPIBlockOutlookRpcHttp < $true | $false >] [-MAPIBlockOutlookVersions
 < String >] [-MAPIEnabled < $true | $false >] [-Name < String >]
[-OWAActiveSyncIntegrationEnabled < Nullable >] [-OWAAllAddressListsEnabled
 < Nullable >] [-OWACalendarEnabled < Nullable >] [-OWAChangePasswordEnabled
 < Nullable >] [-OWAContactsEnabled < Nullable >] [-OWAEnabled < $true |
$false >] [-OWAJournalEnabled < Nullable >] [-OWAJunkEmailEnabled < Nullable >]
[-OWANotesEnabled < Nullable >] [-OWAPremiumClientEnabled < Nullable >]
[-OWARemindersAndNotificationsEnabled < Nullable >] [-OWASearchFoldersEnabled
 < Nullable >] [-OWASignaturesEnabled < Nullable >]
[-OWASpellCheckerEnabled < Nullable >] [-OWATasksEnabled < Nullable >]
[-OWAThemeSelectionEnabled < Nullable >] [-OWAUMIntegrationEnabled
 < Nullable >] [-OWAUNCAccessOnPrivateComputersEnabled < Nullable >]
[-OWAUNCAccessOnPublicComputersEnabled < Nullable >]
[-OWAWSSAccessOnPrivateComputersEnabled < Nullable >]
[-OWAWSSAccessOnPublicComputersEnabled < Nullable >] [-PopEnabled < $true |
$false >] [-PopMessagesRetrievalMimeFormat < TextOnly | HtmlOnly |
HtmlAndTextAlternative | TextEnrichedOnly | TextEnrichedAndTextAlternative
| BestBodyFormat >] [-PopUseProtocolDefaults < $true | $false >]
[-PrimarySmtpAddress < SmtpAddress >] [-ProtocolSettings
 < MultiValuedProperty >] [-SamAccountName < String >]

c06.indd 164c06.indd 164 12/17/07 3:32:19 PM12/17/07 3:32:19 PM

Chapter 6: Confi guring the Client Access Server Role

165

 Exchange Server 2007 supports a variety of access methods, including POP3, IMAP4, Exchange
 ActiveSync, Outlook Anywhere (formerly known as RPC over HTTP), and Outlook Web Access. It is
possible to enable and disable access to these features per - mailbox with the Set-CASMailbox cmdlet.

 For example, to enable or disable all users the ability to use IMAP4 for email access, set the
ImapEnabled parameter. This can be useful to prevent non - MAPI clients, like Outlook Express or
Entourage, access for a specific user:

Get-Mailbox | Set-CASMailbox -imapenabled:$true
Get-Mailbox | Set-CASMailbox -imapenabled:$false

 To change a specific user, pass the SMTP address, alias, UPN, DN, or GUID in the Identity parameter:

Set-CASMailbox -Identity Jeffrey@exchangeexchange.com -PopEnabled:$false

 The numerous Set-CASMailbox parameters give granular control to administrators for customizing the
user experience.

 Disabling Outlook Modes
 Exchange Server 2007 provides the ability to lock down the versions and modes that the Outlook client
can connect with. This is a great way to provide extra security to the network by preventing access to
older or non - patched clients.

 In addition, it is now possible to control which modes can be used to connect. For example, you can
prevent access of clients using Cached Mode or Outlook Anywhere. This is useful in environments where
desktop search applications are installed. Non - Cached Mode clients can generate a significant amount of
disk I/O traffic and affect the performance of the server. Forcing all clients to use Cached Mode can pre-
vent performance issues because the desktop applications work against the local machine copy.

Get-Mailbox | Set-CASMailbox -MAPIBlockOutlookNonCachedMode $true

 Behind the scenes the cmdlet is setting the protocolSettings property on the user ’ s Active Directory
account. There are a number of tools that can be used to see properties on Active Directory objects.
Figure 6 - 1 shows the protocolSettings property using ADSIEdit. ADSIEdit is included in the
Windows Server 2003 support tools, located on the installation CD in the Support\Tools\Suptools
.msi.LDP , another directory browsing tool, is also installed with the support tools.

c06.indd 165c06.indd 165 12/17/07 3:32:20 PM12/17/07 3:32:20 PM

Part II: Working with Server Roles

166

Figure 6-1

 Disabling Outlook Versions
 In addition to blocking protocols, it is also possible to block specific versions of Outlook. An organization
may choose to block versions based on support, features, or security. Restrictions can be a single client
version, a range of versions, an open - ended range, or any combination separated by commas.
Restrictions are also configured per - user.

 Following are some examples of blocking all versions before Outlook 2007, blocking Outlook 2003 RTM
through Outlook 2003 Service Pack 2, Outlook 2002 RTM and Outlook 2007 RTM, and finally removing
any restrictions:

Get-Mailbox | Set-CASMailbox -MAPIBlockOutlookVersions “-12.6024.5000”
Get-Mailbox | Set-CASMailbox -MAPIBlockOutlookVersions “11.5608.5606-11.6568.5658”
Get-Mailbox | Set-CASMailbox -MAPIBlockOutlookVersions “11.5608.5606-11.6568.5658”,
”12.4518.1014”
Get-Mailbox | Set-CASMailbox -MAPIBlockOutlookVersions $null

c06.indd 166c06.indd 166 12/17/07 3:32:20 PM12/17/07 3:32:20 PM

Chapter 6: Confi guring the Client Access Server Role

167

 The mailbox properties are cached in the information store, and may take several hours before the
settings are effective. Microsoft TechNet article http://technet.microsoft.com/en - us/
library/bb219050.aspx provides more detail on this caching.

 To see how a user is configured, pass the mailbox name (alias) to the Get-CASMailbox cmdlet:

Get-Mailbox -Identity Jeffrey | fl

 Figure 6 - 2 shows the output from this cmdlet.

Figure 6-2

 Enabling POP 3/ IMAP 4
 Out of the box, both POP3 and IMAP4 protocols are disabled. These protocols allow both Windows and
non - Windows clients the ability to receive mail from Exchange. Because they provide support for non -
 Windows clients, they may be required in some organizations. This section shows the following cmdlets:

❑ Get-Service

❑ Set-PopSettings

❑ Set-ImapSettings

c06.indd 167c06.indd 167 12/17/07 3:32:20 PM12/17/07 3:32:20 PM

Part II: Working with Server Roles

168

 To enable either protocol, first the services must be set to Automatic, as shown in Figure 6 - 3 . Next, the
service must be started. Figure 6 - 3 is an example of enabling and starting the IMAP4 service. To enable
POP3, replace the references from IMAP4 to POP3.

Figure 6-3

 The following example checks the status of the IMAP4 service, or all the services that start with
msexchange:

Get-Service msexchangeimap4
Get-Service msexchange*

 There are a number of options for both protocols that can be fine - tuned. Most of the settings are to
change connection and authentication options. Exchange Server 2007 implements higher security out of
the box and it is generally unnecessary to change any configuration. However, to change POP3 and
IMAP4 settings, use the cmdlets Set-PopSettings and Set-ImapSettings as shown here:

Set-PopSettings [-AuthenticatedConnectionTimeout < EnhancedTimeSpan >]
[-Banner < String >] [-CalendarItemRetrievalOption < iCalendar | intranetUrl
| InternetUrl | Custom >] [-DomainController < Fqdn >] [-Instance
 < Pop3AdConfiguration >] [-LoginType < PlainTextLogin |
PlainTextAuthentication | SecureLogin >] [-MaxCommandSize < Int32 >]
[-MaxConnectionFromSingleIP < Int32 >] [-MaxConnections < Int32 >]
[-MaxConnectionsPerUser < Int32 >] [-MessageRetrievalMimeFormat < TextOnly |
HtmlOnly | HtmlAndTextAlternative | TextEnrichedOnly |
TextEnrichedAndTextAlternative | BestBodyFormat >]
[-MessageRetrievalSortOrder < Ascending | Descending >] [-OwaServerUrl
 < String >] [-PreAuthenticatedConnectionTimeout < EnhancedTimeSpan >]
[-ProxyTargetPort < Int32 >] [-Server < ServerIdParameter >] [-SSLBindings
 < MultiValuedProperty >] [-UnencryptedOrTLSBindings < MultiValuedProperty >]
[-X509CertificateName < String >]
Set-ImapSettings [-AuthenticatedConnectionTimeout < EnhancedTimeSpan >]
[-Banner < String >] [-CalendarItemRetrievalOption < iCalendar | intranetUrl
| InternetUrl | Custom >] [-DomainController < Fqdn >] [-Instance

c06.indd 168c06.indd 168 12/17/07 3:32:20 PM12/17/07 3:32:20 PM

Chapter 6: Confi guring the Client Access Server Role

169

 < Imap4AdConfiguration >] [-LoginType < PlainTextLogin |
PlainTextAuthentication | SecureLogin >] [-MaxCommandSize < Int32 >]
[-MaxConnectionFromSingleIP < Int32 >] [-MaxConnections < Int32 >]
[-MaxConnectionsPerUser < Int32 >] [-MessageRetrievalMimeFormat < TextOnly |
HtmlOnly | HtmlAndTextAlternative | TextEnrichedOnly |
TextEnrichedAndTextAlternative | BestBodyFormat >] [-OwaServerUrl < String >]
[-PreAuthenticatedConnectionTimeout < EnhancedTimeSpan >] [-ProxyTargetPort
 < Int32 >] [-Server < ServerIdParameter >] [-ShowHiddenFoldersEnabled < $true |
$false >] [-SSLBindings < MultiValuedProperty >] [-UnencryptedOrTLSBindings
 < MultiValuedProperty >] [-X509CertificateName < String >]

 One setting that may need to be changed is the logintype . This parameter controls the security around
authentication. The security settings are configured with the logintype parameter, which has the
following options:

❑ PlainTextLogin requires no encryption (TLS or SSL) over the standard POP3 (110) and IMAP4
(143) ports. Usernames and passwords are in clear text, so this is not practical in a production
network. It may be useful for troubleshooting purposes.

❑ PlainTextAuthentication still requires no encryption over the standard ports, but Basic
Authentication is permitted only on the secure ports POP3 (995) and IMAP4 (993). Clients can
be configured to use Secure Password Authentication (SPA), which is Windows Integrated
Authentication, and not use SSL.

❑ SecureLogin is the default logintype. This configuration requires TLS or SSL encryption before
authenticating.

 This example sets the IMAP4 logintype to plaintext:

Set-ImapSettings -logintype plaintextlogin

 Restarting the POP3 and IMAP4 services is required before configuration changes take effect.

 A handy trick to finding out valid parameter values is to pass a made - up value. The error sometimes will
contain a list of valid choices, as shown in Figure 6 - 4 .

 If the organization will heavily use IMAP4, there are some additional parameters to configure.
The MaxConnections parameter sets the maximum number of connections for IMAP4. The default is
2,000 and can be increased up to 25,000. The default for the maximum number of connections from a
single IP, MaxConnectionFromSingleIP , defaults to 20. On networks using NAT, this setting can be too
low. The value can be increased to a maximum of 1,000. Finally, it is possible to set the maximum
number of connections per user. The default is 10 connections, and can be increased to 1,000. It is not
recommended to increase the connections per user, unless there is a specific requirement to do so.

 This example sets the maximum number of connections to 5,000, and the maximum number of connec-
tions from a single IP to 1,000:

Set-ImapSettings -Server CA100 -MaxConnections 5000
 -MaxConnectionFromSingleIP 1000

c06.indd 169c06.indd 169 12/17/07 3:32:21 PM12/17/07 3:32:21 PM

Part II: Working with Server Roles

170

Figure 6-4

 Certificates
 Perhaps one of the most challenging aspects of configuring the Client Access Server is configuring
security. All external communication to a CAS server should be secured using Secure Sockets Layer (SSL)
because information like passwords is sent in clear text across un - trusted networks. SSL requires a digital
certificate, which acts like a driver ’ s license. To get a driver ’ s license, one must prove that they are who
they are to a government issuer, typically with something like a birth certificate. Now, when you present
your license to a service, maybe to cash a check, they accept who you are because they trust the govern-
ment issuer. Clients, like Outlook or Internet Explorer, trust a certification authority that issues the
certificate to the web server. Once clients trust that the web server is who it claims to be, because they
trust the issuer, the data can be encrypted so it is not readable.

 Exchange ActiveSync, Outlook Web Access, Outlook Anywhere, POP3, and IMAP4 are all configurable
to be secured with SSL.

 This section uses the following cmdlets:

❑ New-ExchangeCertificate

❑ Import-ExchangeCertificate

 ❑ Enable-ExchangeCertificate

c06.indd 170c06.indd 170 12/17/07 3:32:21 PM12/17/07 3:32:21 PM

Chapter 6: Confi guring the Client Access Server Role

171

 Certificate Types
 Out of the box, Exchange uses self - signed certificates to provide secure connections without any
 administrative configuration. If clients will be accessing the CAS server from external sources, it is
 necessary to change the default certificate with a new one issued by a trusted certificate authority. Also,
self - signed certificates cannot be used with Outlook Anywhere.

 Certificates can be obtained from a public (commercial) authority or an internal one — as long as all the
clients trust the certificate authority ’ s root certificate. Using a commercial certificate may be less complex
because deployment of the internal root certificate means touching every client, including mobile devices.

 Because there are multiple services, each with a different possible DNS name, there are three strategies
to handle this. First, generate multiple certificates, one for each URL. The second is to use a certificate
with Subject Alternate Names (SANs), which allow a list of DNS names. This is also referred to as a
Unified Communication certificate. The third is a wildcard certificate, which works for any DNS name in
a domain. Not all clients work with SAN or wildcard certificates and may not function correctly. The
following table discusses the pros and cons of the different certificate types:

Certificate
Type Benefit Drawback Example

Multiple
Single
Certificates

Very flexible No
compatibility
issues

May not be cost
effective if there are
many DNS names.
More certificates to
manage.

Webmail.exchangeexchange.com

Subject
Alternate
Names

Can use one
 certificate to
cover multiple
DNS names

Possible compatibil-
ity issues

Autodiscover
.exchangeexchange.com,
Webmail.exchangeexchange.com

Wildcard Can be most
cost effective

Likely compatibility
issues. In particular,
mobile devices may
not understand the
wildcard certificate.

*.exchangeexchange.com

 The request process is different than certificate requests for other applications. If the correct process is
not followed, the resulting certificate may not be valid. The high - level steps for certificate requests are:

 1. Generate the certificate

 2. Obtain the certificate from a public certificate authority

 3. Import the certificate

 4. Enable the certificate

 5. Copy the certificate

 These steps are discussed in more detail in the following sections.

c06.indd 171c06.indd 171 12/17/07 3:32:21 PM12/17/07 3:32:21 PM

Part II: Working with Server Roles

172

 Generating the Certificate
 The first step is to generate the certificate. Certificate requests are generated with the
New-ExchangeCertificate cmdlet:

New-ExchangeCertificate [-DomainController < String >] [-DomainName
 < MultiValuedProperty >] [-FriendlyName < String >] [-IncludeAcceptedDomains
 < SwitchParameter >] [-IncludeAutoDiscover < SwitchParameter >] [-Instance
 < X509Certificate2 >] [-KeySize < Int32 >] [-PrivateKeyExportable < $true |
$false >] [-Services < None | IMAP | POP | UM | IIS | SMTP >] [-SubjectName
 < X500DistinguishedName >]

New-ExchangeCertificate [-BinaryEncoded < SwitchParameter >]
[-DomainController < String >] [-DomainName < MultiValuedProperty >] [-Force
 < SwitchParameter >] [-FriendlyName < String >] [-GenerateRequest
 < SwitchParameter >][-IncludeAcceptedDomains < SwitchParameter >]
[-IncludeAutoDiscover < SwitchParameter >] [-Instance < X509Certificate2 >]
[-KeySize < Int32 >][-Path < String >] [-PrivateKeyExportable < $true |
$false >] [-SubjectName < X500DistinguishedName >]

 One of the key parameters in creating a certificate request is SubjectName . The Subject Name is the
primary name that matches the certificate to the DNS name in the URL. It is composed of the elements
discussed in the following table:

Element Definition Example

Common Name (CN) The fully qualified domain name
(FQDN) for the URL / server

Webmail.ExchangeExchange
.com

Subject Alternative Name
(SAN)

Alternate fully qualified domain
name (FQDN) for the URL /
server

Autodiscover
.ExchangeExchange.Com

Organization Name (O) The Full Legal Company Name
or Personal Name

ExchangeExchange

Organizational Unit (OU) Typically the branch or group
ordering the certificate

Information Systems

Domain Component (DC) Part of a DNS name DC=com,
DC=ExchangeExchange

Country (C) The two-letter country code
using the ISO 3166 country
names

US

State (S) The state’s full name Illinois

Locality (L) The locality or city full name Chicago

c06.indd 172c06.indd 172 12/17/07 3:32:21 PM12/17/07 3:32:21 PM

Chapter 6: Confi guring the Client Access Server Role

173

 So, putting it all together, a Subject Name may look like this:

 C=US, S=Illinois, L=Chicago, O=ExchangeExchange, OU=Information Systems,
CN=webmail.exchangeexchange.com

 For some certificate issuers the company listed in the Organization Name (O) must own the domain
name that appears in Common Name. If it does not match, it may fail to issue the certificate.

 Running the New-ExchangeCertificate cmdlet without any parameters generates a self - signed
certificate. The default self - signed certificates have one year before they expire.

 As previously discussed, it is possible to request a certificate with multiple names. This is likely to be the
most common type of certificate for Exchange Server 2007.

 There are a few parameters worth discussing in more detail before generating the certificate for our test
domain, exchangeexchange.com .

 First is the includeaccepteddomain parameter. This includes all of the organization ’ s DNS names on
the request. For example, the test CAS is joined to the Active Directory domain ExchangeExchange
.local . Figure 6 - 5 shows the effects of setting this parameter to true on the left and false on the right.
The request will have both exchangeexchange.com and ExchangeExchange.local .

Figure 6-5

 Next is the includeautodiscover parameter. This will append autodiscover to the list of Subject
Alternative Names. This is just a convenience, because this can be manually added to the domainname
parameter. If an Autodiscover domain is already included in the domainname parameter, it will not add
 autodiscover twice.

 Finally, the domainname parameter sets the list of Subject Alternative Names. Figure 6 - 6 shows the result
of setting the domainname parameter to webmail.exchangeexchange.com, Autodiscover
.exchangeexchange.com, pop.exchangeexchange.com, imap.exchangeexchange.com .

c06.indd 173c06.indd 173 12/17/07 3:32:22 PM12/17/07 3:32:22 PM

Part II: Working with Server Roles

174

This certificate will now be accepted for any of the domains listed. It is not required to have the
NetBIOS or fully qualified domain name (FQDN) of the server. However, it may make configuration
easier if users will be accessing the CAS from internal networks.

Figure 6-6

 Putting all of this together, this is an example for our test domain exchangeexchange.com . The external
DNS name is webmail, which is how users access OWA. This request uses a Subject Alternative Name
certificate to provide secure access to Autodiscover.exchangeexchange.com for Outlook 2007 clients:

New-ExchangeCertificate -GenerateRequest:$true -FriendlyName ExchangeExchangeCert -
PrivateKeyExportable:$true -path c:\temp\certreqSAN.req -subjectname “C=US,
S=Illinois, L=Chicago, O=ExchangeExchange, OU=Information Systems,
CN=webmail.exchangeexchange.com” -DomainName
webmail.exchangeexchange.com,autodiscover.exchangeexchange.com,pop.
exchangeexchange.com,imap.exchangeexchange.com

 Obtaining the Certificate
 The process for obtaining the certificate depends on which certificate authority is used. Most services
allow uploading the request file generated in the previous step. Some certificate authorities require past-
ing the contents of the request file directly. Whichever mechanism is used, once the request is processed,
the certificate authority returns a valid digital certificate. This certificate needs to be protected because it
contains both the public and the private key.

c06.indd 174c06.indd 174 12/17/07 3:32:22 PM12/17/07 3:32:22 PM

Chapter 6: Confi guring the Client Access Server Role

175

 Importing the Certificate
 Once the digital certificate is received, the next step is to import the certificate into the computer ’ s
certificate store. This step must be executed on the same machine that made the request. This is because
the security on the certificate is unique to the machine that ran the New-ExchangeCertificate cmdlet.
If the import is run on a different machine, the resulting imported certificate will not have the private
key, and it will not be usable for the next step.

Import-ExchangeCertificate -Path < String > [-DomainController < Fqdn >]
[-FriendlyName < String >] [-Password < SecureString >]

 In the test environment example, the following is the cmdlet used to import the certificate:

Import-ExchangeCertificate -Path C:\temp\certreq.req

 If a mistake is made after a certificate is imported, it can be removed with the
Remove- ExchangeCertificate cmdlet. This cmdlet requires confirmation in order
to complete the action, as shown in Figure 6 - 7 .

Figure 6-7

c06.indd 175c06.indd 175 12/17/07 3:32:23 PM12/17/07 3:32:23 PM

Part II: Working with Server Roles

176

 Enabling the Certificate
 The final step is to enable the certificate. This step ties the certificate to one or more Exchange services,
such as POP or Outlook Web Access. Behind the scenes, the cmdlet is updating values in the IIS
metabase. The cmdlet Enable-ExchangeCertificate is used for this purpose:

Enable-ExchangeCertificate -Thumbprint < String > -Services < None | IMAP |
POP | UM | IIS | SMTP > [-DomainController < Fqdn >]

 The thumbprint is the unique identifier for the certificate, which can be displayed with the
Get-ExchangeCertificate cmdlet. This cmdlet also shows which certificates are currently
enabled for which services.

 The Services switch specifies which of the services will use the certificate. For example, to enable a
 certificate for OWA, POP, and IMAP the cmdlet would be:

Enable-ExchangeCertificate -thumbprint
 77BADDFAAACB0D3340F60B7D45029968D3F0A75E -Services Pop,Imap,IIS

 Copy the Certificate
 If you have multiple Client Access Servers or ISA servers at the edge, then you may need to copy the
certificate to those servers. The easiest way to back up the certificate is with the certificate manager
MMC snap - in. After launching the snap - in, a dialog box prompts you to choose which certificate store to
manage. Select the Computer Account option and the local computer (this assumes running this on the
CAS server). In the Personal store, right - click the certificate and choose Export. This launches the certifi-
cate export wizard. Make sure to export the private key, which requires creating a password to protect
the certificate. The result is a PFX file that contains both the public and private key pair. It is critical to
protect this file, because if it is compromised the certificate must be revoked and a new certificate will
need to be generated.

 On each target server, use the Import-ExchangeCertificate cmdlet as in the previous step. This time,
it will be slightly different because the cmdlet requires a credential parameter to finish the import with the
private key. To get the password for the parameter, use the sub - expression Get-Credential to have
the standard username and password dialog box pop up. The username is not important; only the
password will be used. Input the password selected during the certificate export. An example of this
cmdlet looks like this:

Import-ExchangeCertificate -Path c:\temp\CASCert.pfx -Password:
(Get-Credential).password

c06.indd 176c06.indd 176 12/17/07 3:32:23 PM12/17/07 3:32:23 PM

Chapter 6: Confi guring the Client Access Server Role

177

Figure 6-8

 Autodiscover
 Autodiscover is a new feature in Exchange Server 2007 that works with Outlook 2007 to automatically
configure the client ’ s profile. This feature can significantly lower helpdesk calls and directly reduce
support costs. It also helps with disaster recovery scenarios because the Outlook 2007 client will update
its profile on startup. The user is prompted to enter his email address and password, and if configured
correctly, Outlook 2007 receives its configuration and the user can start using email. This even works
with Outlook Anywhere from outside the corporate network. The configuration is also periodically
checked as long as Outlook is running.

 Before discussing how to configure Autodiscover, understanding how it works is helpful. Outlook 2007
processes the Autodiscover process differently depending on whether the client is internal or external. If
the client can access Active Directory, it queries for the service connection point (SCP). The SCP holds the
location of the Autodiscover URL. The SCP is created during setup, and initially is set to http:// < CAS
hostname > /Autodiscover/Autodiscover.xml . The SCP object resides in the configuration container
with the other Exchange configuration objects.

 Figure 6 - 8 shows how the preceding cmdlet prompts the administrator to set the password.

c06.indd 177c06.indd 177 12/17/07 3:32:23 PM12/17/07 3:32:23 PM

Part II: Working with Server Roles

178

 It is possible to change the service location by setting the AutodiscoverServiceInternalURI
parameter in the Set-ClientAccessServer cmdlet:

Set-ClientAccessServer -identity CA100 -AutodiscoverServiceInternalURI
“https://ca100.exchangeexchange.com”

 It is not necessary to set the Autodiscover InternalURL and ExternalURL with
Set-AutodiscoverVirtualDirectory , because the Outlook client will not use
them to locate Autodiscover services.

 Outlook then connects to the Autodiscover URL, which is on the CAS. Finally, the Autodiscover service
returns the addresses of the available services. These services include URLs for the Availability
Service, Exchange Web Service, Offline Address Book, and Unified Messaging.

 In the case where Outlook fails to contact Active Directory, Outlook takes the user ’ s email address and
tries some hard - coded locations. The URL will be either https:// < smtp domain address > /
Autodiscover/Autodiscover.xml or https://autodiscover. < smtp address domain > /
Autodiscover/Autodiscover.xml . The process from this point is the same as the internal scenario.

 By default, the CAS is set up with Autodiscover as a virtual directory. To move the Autodiscover
virtual directory to another host, for example a web server that already hosts a public website,
start by removing the existing virtual directory on the CAS. This is done with the
 Remove-AutodiscoverVirtualDirectory cmdlet:

Figure 6-9

 Figure 6 - 9 shows the output from a test environment using an LDAP tool called LDP to show the SCP.

c06.indd 178c06.indd 178 12/17/07 3:32:23 PM12/17/07 3:32:23 PM

Chapter 6: Confi guring the Client Access Server Role

179

Remove-AutodiscoverVirtualDirectory -Identity < VirtualDirectoryIdParameter >
 [-DomainController < Fqdn >]

 Once the old virtual directory is removed, create the new one with the
New-AutodiscoverVirtualDirectory cmdlet:

New-AutodiscoverVirtualDirectory [-ApplicationRoot < String >]
[-AppPoolId < String >] [-BasicAuthentication < $true | $false >] [-Confirm
[< SwitchParameter >]] [-DigestAuthentication < $true | $false >]
[-DomainController < Fqdn >] [-ExternalUrl < Uri >] [-InternalUrl < Uri >]
[-Path < String >] [-TemplateInstance < PSObject >] [-WebSiteName < String >]
[-WhatIf [< SwitchParameter >]] [-WindowsAuthentication < $true | $false >]

 For example, to create a new Autodiscover virtual directory named Autodiscover.exchangexchange
.com that requires Integrated and Digest authentication, run the cmdlet:

New-AutodiscoverVirtualDirectory -WebSiteName “Autodiscover.exchangeexchange.com” -
WindowsAuthentication:$true -DigestAuthentication:$true

 It is possible to test Autodiscover services with Outlook 2007. Once Outlook 2007 is running, hold CRTL
while right - clicking the Outlook icon in the system tray. A Test E - mail AutoConfiguration option is
available, as shown in Figure 6 - 10 .

Figure 6-10

c06.indd 179c06.indd 179 12/17/07 3:32:24 PM12/17/07 3:32:24 PM

Part II: Working with Server Roles

180

 Another option is to run the Test-OwaConnectivity cmdlet. Before the cmdlet will run,
a test user needs to be created. There is a script located in the scripts directory named
New-TestCasConnectivityUser.ps1 . If the script is not run from a mailbox server, one must
be piped into the script. Figure 6 - 11 illustrates creating the connectivity test user with the
new-TestCasConnectivityUser script.

get-mailboxServer | new-TestCasConnectivityUser.ps1 [-UMDialPlan
 < dialplanname > -UMExtension < numDigitsInDialplan >]

get-mailboxServer foo | new-TestCasConnectivityUser.ps1 [-UMDialPlan
 < dialplanname > -UMExtension < numDigitsInDialplan >]

Figure 6-11

c06.indd 180c06.indd 180 12/17/07 3:32:24 PM12/17/07 3:32:24 PM

Chapter 6: Confi guring the Client Access Server Role

181

 Proxy and Redirection
 The CAS provides many different types of client access. Each of the services has a namespace associated
with it. For example, Outlook Web Access, IMAP, and Exchange ActiveSync clients each require a URL to
connect to the service. They do not have to be the same, and in the case of Autodiscover it will likely not
be the same. As illustrated previously in the certificates section, features or security needs may require
more than a single namespace for a certificate. In addition to security the namespace can have implica-
tions on network traffic. In previous versions of Exchange, the front - end server proxy requests to the
mailbox server without regard to physical network topology. Exchange Server 2007 tries to provide the
 “ best ” service by using a CAS located closest to the user ’ s mailbox server.

 There are architectural decisions on where to place a Client Access Server, and how to create a
namespace for external access. These design points are beyond the scope of this book, but understanding
the impact and how to configure the CAS to handle these configurations is not. This discussion focuses
on Outlook Web Access, but proxy and redirection affects the other CAS services too. Check with the
Exchange Server 2007 online help to learn in detail how the other services use proxy and redirection.

 Only one Client Access Server must be Internet facing. Exchange will proxy OWA requests to the Client
Access Server in other sites if configured correctly. There must be at least one Client Access Server in
each AD site to use these services. For Exchange to proxy correctly, the Internet - facing CAS has the
 ExternalURL property set and the other CAS has only the InternalURL set. (See Figure 6 - 12 .)

Site A Site B

CAS A

ExternalURL = webmail.exchangeexchange.com

CAS B

No ExternalURL

MBX

Figure 6-12

c06.indd 181c06.indd 181 12/17/07 3:32:24 PM12/17/07 3:32:24 PM

Part II: Working with Server Roles

182

Site A Site B

CAS A

ExternalURL = webmail.exchangeexchange.com

CAS B MBX

HTTP Redirect

ExternalURL = eurwebmail.exchangeexchange.com

Figure 6-13

 It is possible to override the redirection behavior so a CAS will proxy the connection even when the
 ExternalURL is set. In this scenario, the user attempts to connect to webmail.exchangeexchange.com ,
which is CAS A. CAS A sees that the ExternalURL parameter is configured on CAS B, so it tries to redi-
rect the client. If the Internet connection to CAS B is unavailable for any reason, the user ’ s attempt to use
OWA (CAS B) fails. By temporarily setting the RedirectToOptimalServer to false, CAS A will proxy,
even though CAS B has the ExternalURL set. Of course this requires that Site A and Site B can still com-
municate with each other. (See Figure 6 - 14 .)

 The cmdlet to the override redirection would look like this:

Set-OwaVirtualDirectory -Identity “owa (default web site)” -
RedirectToOptimalOWAServer:$false

 If the second CAS has the ExternalURL set, the Internet CAS redirects the connection to the URL
specified. This is often used when there are multiple geographies or costly WAN links. Exchange always
tries to use the CAS closest to the user ’ s mailbox. (See Figure 6 - 13 .)

c06.indd 182c06.indd 182 12/17/07 3:32:25 PM12/17/07 3:32:25 PM

Chapter 6: Confi guring the Client Access Server Role

183

Figure 6-14

 Outlook Anywhere
 Outlook Anywhere was formerly known in previous versions of Exchange as RPC over HTTP. This
feature allows the full Outlook client to access Exchange securely through the Internet. It also works
seamlessly through firewalls.

 The cmdlet used for Outlook Anywhere configuration is:

❑ Enable-OutlookAnywhere

 The Enable-OutlookAnywhere cmdlet is used to enable or disable this feature. It has the following
syntax:

Enable-OutlookAnywhere -ExternalAuthenticationMethod < Basic | Digest |

Ntlm | Fba | WindowsIntegrated | Misconfigured > -ExternalHostname
 < Hostname > -SSLOffloading < $true | $false > [-DomainController < Fqdn >]
[-Server < ServerIdParameter >] [-TemplateInstance < PSObject >]
[< CommonParameters >]

 There is not a lot of configuration needed to enable Outlook Anywhere. There are four parameters to
configure: the external name, the authentication type, the servers enabled for Outlook Anywhere, and
whether or not an SSL will be offloaded. All the prerequisites for enabling RPC over HTTP must be
 configured before running Enable-OutlookAnywhere .

c06.indd 183c06.indd 183 12/17/07 3:32:25 PM12/17/07 3:32:25 PM

Part II: Working with Server Roles

184

 This example shows how to enable Outlook Anywhere on the test CAS server:

Enable-OutlookAnywhere -Server CA100 -ExternalHostNname
“webmail.exchangeexchange.com” -ExternalAuthenticationMethod NTLM
-SSLOffloading:$false

 Working with the Offline Address Book
 The Offline Address Book is a copy of an address book that an Outlook client can download and use
while disconnected. Previous versions of Exchange stored Offline Address Book (OAB) files in a system
Public folder. New to Exchange Server 2007 is the option to distribute the OAB through IIS over HTTPS
and the Background Intelligent Transfer Service (BITS). Only Outlook 2007 clients can use this new
method.

 Offline Address Book related cmdlets are:

❑ Set-OabVirtualDirectory

❑ Set-OfflineAddressBook

 Creating the Offline Address Book
 When the Client Access Server role is installed, a virtual directory named OAB is created on the default
IIS website. The OAB is not accessible from outside the corporate network until the ExternalURL
parameter is set with the Set-OabVirtualDirectory cmdlet:

Set-OabVirtualDirectory -Identity < VirtualDirectoryIdParameter >
[-DomainController < Fqdn >] [-ExternalUrl < Uri >] [-InternalUrl < Uri >]
[-PollInterval < Int32 >] [-RequireSSL < $true | $false >][< CommonParameters >]

Set-OabVirtualDirectory [-DomainController < Fqdn >] [-ExternalUrl < Uri >]
[-Instance < ADOabVirtualDirectory >] [-InternalUrl < Uri >] [-PollInterval
 < Int32 >] [-RequireSSL < $true | $false >] [< CommonParameters >]

 For example:

Set-OabVirtualDirectory –;Identity “CA100\OAB (Default Web Site)” -ExternalURL
“https://OAB.exchangeexchange.com/OAB”

 The IIS virtual directory does not require SSL security by default. This can be enforced either through IIS
Manager or with PowerShell. To require SSL, the cmdlet would be:

Set-OABVirtualDirectory -Identity “OAB (Default Web Site) -RequireSSL $true

 For clients to be able to retrieve the OAB, distribution points need to be configured. Only Outlook 2007
can take advantage of the web - based distribution. All legacy clients require a Public folder installed and
configured as a distribution point.

 To configure the Offline Address Book properties, use the Set-OfflineAddressBook cmdlet. The
specifics on how distribution works and how it is configured follows this section.

c06.indd 184c06.indd 184 12/17/07 3:32:26 PM12/17/07 3:32:26 PM

Chapter 6: Confi guring the Client Access Server Role

185

Set-OfflineAddressBook -Identity < OfflineAddressBookIdParameter >
[-AddressLists < AddressBookBaseIdParameter[] >] [-DiffRetentionPeriod
 < Nullable >] [-DomainController < Fqdn >] [-IsDefault < $true | $false >]
[-Name < String >] [-PublicFolderDistributionEnabled < $true | $false >]
[-Schedule < Schedule >] [-Versions < Collection >] [-VirtualDirectories
 < VirtualDirectoryIdParameter[] >] [< CommonParameters >]
Set-OfflineAddressBook [-AddressLists < AddressBookBaseIdParameter[] >]
[-DiffRetentionPeriod < Nullable >] [-DomainController < Fqdn >] [-Instance
 < OfflineAddressBook >] [-IsDefault < $true | $false >] [-Name < String >]
 [-PublicFolderDistributionEnabled < $true | $false >] [-Schedule < Schedule >]
[-Versions < Collection >] [-VirtualDirectories
 < VirtualDirectoryIdParameter[] >] [< CommonParameters >]

 To set the test CAS as a web distribution point, the cmdlet would be:

Set-OfflineAddressBook -Identity “\Default Offline Address Book”
-VirtualDirectories “CA100\OAB (Default Web Site)”

 Running this cmdlet results in the settings shown in Figure 6 - 15 in the GUI.

Figure 6-15

c06.indd 185c06.indd 185 12/17/07 3:32:26 PM12/17/07 3:32:26 PM

Part II: Working with Server Roles

186

 Address Book Generation
 The Offline Address Book (OAB) is generated once per day by default. If Public folder distribution is
enabled, it places a copy in a system Public folder. It uses the Public folder server that is set as the default
Public folder store for the generation server. It is up to an administrator to make sure there are replicas
on other Public folder servers. The chapter on Public folders explains how to add replicas to Public
folders.

 Web - based distribution is actually done by the Client Access Server. The Exchange File Distribution
Service runs on the CAS and it is responsible for copying the updated files from the OAB file share on
the OAB generation server. By default, this polls every 8 hours from the time the service starts. This
means it can be at most 32 hours before a change is propagated throughout the system. Restarting the
Exchange File Distribution Service forces it to check if updates need to be copied.

 The default location where the System Attendant service publishes the Offline Address Book files is
 %installdir%\ExchangeOAB . This is configurable in Service Pack 1.

 For example, if the generation process is daily at 5:00am, and a user is added after the process finishes,
say 6:00am, the next time the user will be in the Offline Address Book is 24 hours later. If a Client
Access Server polls before the generation is complete, it will be another 8 hours until the CAS picks it
up for web distribution. This can be configured to generate more frequently if needed using the
Set-OfflineAddressBook cmdlet.

 This example changes the generation frequency to twice daily at 5am and 5pm. Check the online help for
detailed information on formatting the schedule parameter.

Set-OfflineAddressBook -Identity “\Default Offline Address Book” -Schedule
Sun.5:00 AM-Sun.5:15 AM, Sun.5:00 PM-Sun.5:15 PM, Mon.5:00 AM-Mon.5
:15 AM, Mon.5:00 PM-Mon.5:15 PM, Tue.5:00 AM-Tue.5:15 AM, Tue.5:00
PM-Tue.5:15 PM, Wed.5:00 AM-Wed.5:15 AM, Wed.5:00 PM-Wed.5:15 PM,
Thu.5:00 AM-Thu.5:15 AM, Thu.5:00 PM-Thu.5:15 PM, Fri.5:00 AM-Fri.5:15
AM, Fri.5:00 PM-Fri.5:15 PM, Sat.5:00 AM-Sat.5:15 AM, Sat.5:00 PM-Sa
t.5:15 PM

 LinkAccess
 LinkAccess is a new feature that provides read - only Outlook Web Access (OWA) integration with
Microsoft Office SharePoint Services and file shares. For example, users can access documents from a
home directory connecting through OWA on a home computer. LinkAccess is fairly wide open out of the
box. Users have access to all file shares and SharePoint libraries from public or private computers.

 Link access – related cmdlets are:

❑ Set-OWAVirtualDirectory

❑ Set-CasMailbox

c06.indd 186c06.indd 186 12/17/07 3:32:26 PM12/17/07 3:32:26 PM

Chapter 6: Confi guring the Client Access Server Role

187

 Another feature that compliments LinkAccess is a feature called WebReady Document viewing.
WebReady converts documents to HTML on the fly and displays them in a browser. This is extremely
useful when a user may not have the target application installed. For example, a user is traveling and is
sent an important Microsoft Word document, but he does not have Microsoft Office installed. With
WebReady enabled, the CAS displays the Word document as HTML in a browser. Settings can be config-
ured separately whether the user selects the public or private computer option when logging in to OWA,
as shown in Figure 6 - 16 . It is possible to block LinkAccess functionality while still providing WebReady
Document viewing.

Figure 6-16

 Support for the latest Office 2007 format will be added in Exchange Server 2007 Service Pack 1.

 This option is user - selected, so there is nothing to stop a user from picking This Is A Private Computer
on a public machine. This may force administrators to configure the settings the same way for both
 public and private. These settings are configurable under Server Configuration, Client Access. Select the
Client Access Server and select the properties on the OWA virtual directory. But, because this is a book
about PowerShell, here is how to configure it with the Set-OwaVirtualDirectory cmdlet.

 The Set-OwaVirtualDirectory cmdlet has more than 60 parameters, but only a few will be
covered here.

c06.indd 187c06.indd 187 12/17/07 3:32:27 PM12/17/07 3:32:27 PM

Part II: Working with Server Roles

188

 There are four properties that control whether or not the LinkAccess is available.
UNCAccessOnPrivateComputer and WSSAccessOnPrivateComputer control file - share and
SharePoint access for the login option “ This is a private computer ” by setting it to either true or false
. UNCAccessOnPublicComputer and WSSAccessOnPublicComputer control file - share and SharePoint
access for the login option “ This is a public computer. ”

 This example shows disabling the LinkAccess for SharePoint and file shares when using public
computers:

Set-OWAVirtualDirectory -Identity “owa (default web site)”
-WSSAccessOnPublicComputersEnabled:$false
-UNCAccessOnPublicComputersEnabled:$false

 After setting these two parameters, the next time the user logs in his menu bar in OWA there will no
longer be a Documents tab. In this scenario, users still can use WebReady for attachments to view them
in HTML. (See Figure 6 - 17 .)

Figure 6-17

 It is also possible to set these features on a per - user basis. For example:

Set-CASMailbox -Identity Jeffrey
-OWAWSSAccessOnPublicComputersEnabled:$false
-OWAUNCAccessOnPublicComputersEnabled:$false

 Another important setting is configuring access to remote file servers. There are separate settings to
allow specific servers and deny specific servers. A decision must be made on the default security access
for unknown remote servers. It can be configured to either allow or block servers not specifically listed.
For tighter security, blocking access to remote file servers that are not in the block and allow list is
recommended.

c06.indd 188c06.indd 188 12/17/07 3:32:27 PM12/17/07 3:32:27 PM

Chapter 6: Confi guring the Client Access Server Role

189

 Similar to LinkAccess there are parameters to control public and private computers.
WebReadyDocumentViewingOnPublicComputersEnabled and
 WebReadyDocumentViewingOnPrivateComputersEnabled control this feature.

Set-OWAVirtualDirectory -Identity “owa (default web site)”
-WebReadyDocumentViewingOnPublicComputersEnabled:$false

 There is a default list of file attachment types that can be allowed or blocked. By default, users are forced
to save files with unknown file types. Additional file types can be added or existing ones removed from
the default list. The list is “ global ” to all users using that OWA virtual directory and cannot be config-
ured per person. Editing the lists is a little more complicated because they are multi - valued properties.
So if the following cmdlet was executed, it would erase all the existing file types and replace them with
the new list:

Set-OWAVirtualDirectory -Identity “owa (default web site)” -AllowedFileTypes “.jef”

 Because this is not likely to be what you intended, another method is to work with the virtual directory
as an object. Save the virtual directory to a variable and then add or remove file types. Finally, save the
changes back to the “ real ” virtual directory. This example adds a new file type and removes and existing
one from the AllowedFileTypes parameter:

$owaVdir = Get-OwaVirtualDirectory -Identity “owa (default web site)”
$owaVdir.AllowedFileTypes.Add(“.jef”)
$owaVdir.AllowedFileTypes.Remove(“.txt”)
$owaVdir | set-OwaVirtualDirectory

 Summary
 The Client Access Server plays a larger role than the legacy Front - End server. New features such as
WebReady and LinkAccess provide significant productivity benefits to users. Exchange Server 2007
gives administrators tools to make sure all of the services are up and running. As shown in this chapter,
there are a lot of configuration tasks, so careful planning and testing are needed to ensure a successful
implementation.

c06.indd 189c06.indd 189 12/17/07 3:32:27 PM12/17/07 3:32:27 PM

c06.indd 190c06.indd 190 12/17/07 3:32:28 PM12/17/07 3:32:28 PM

 Configuring the Hub
Transport Role

 Exchange Server 2000/2003 used the concept of bridgehead servers and connectors. A bridgehead
server referred to an Exchange server that served as a connection point for delivering email from
one routing group to another and to remote or external email systems. Bridgehead servers used
connectors to make information flow between routing groups and remote or external systems
possible. Several types of connectors were available: SMTP, Routing Group, and X.400.

 Exchange Server 2007 introduces the concept of the Hub Transport role. Computers running Exchange
Server 2007 with the Hub Transport role are called Hub Transport servers and are identical to
bridgehead servers in Exchange 2000/2003; however, they differ greatly in core transport
functionality. The Hub Transport server role is installed in any Active Directory site that contains the
Mailbox server role and is responsible for mail delivery within the Active Directory site. It can be
installed on separate hardware as the only server role or on the same server hardware in conjunction
with other non - clustered Exchange Server 2007 roles. The Hub Transport server receives messages
from and sends messages to servers running the Mailbox server role. Every message sent and received
by an Exchange mailbox must pass through the Hub Transport server, hence transport rules and
journal policies are not skipped for any message. In a multi - site organization, messages destined for a
user in a different site are transferred to a Hub Transport server in that site for delivery. Messages
destined for the Internet or other messaging systems are sent to the Edge Transport server for delivery.
We discuss the Edge Transport role further in Chapter 9 . The Hub Transport server role uses Send
Connectors and Receive Connectors for email routing and delivery.

 This chapter covers:

❑ Understanding the core transport architecture implemented by the Hub Transport and
Edge Transport servers.

❑ Using and configuring the Hub Transport server

❑ Configuring various types of connectors in Exchange Server 2007

❑ Using email address policies and accepted domains

c07.indd 191c07.indd 191 12/17/07 3:33:06 PM12/17/07 3:33:06 PM

Part II: Working with Server Roles

192

 The Transport Server Architecture
 The core transport architecture was rewritten in Exchange Server 2007 and is very different from
previous versions of Exchange. Those familiar with Exchange Server 2000/2003 might quickly notice
that transport is no longer dependent on Internet Information Server (IIS). In fact, it is required that you
uninstall the SMTP and NNTP services prior to installing Exchange Server 2007 unlike Exchange Server
2000/2003, which required both services to be installed. Additionally, all core components required for
message categorization, routing, and delivery are included in Exchange Transport Service with no
components dependent on IIS. This section briefly reviews the core transport architecture from the
perspective of the Management Shell.

 The following Hub Transport – related cmdlets are discussed:

❑ Get-Queue

❑ Set-Queue

❑ Suspend-Queue

❑ Resume-Queue

❑ Retry-Queue

❑ Get-TransportPipeline

❑ Get-TransportServer

❑ Set-TransportServer

❑ Get-TransportConfig

❑ Set-TransportConfig

❑ Get-NetworkConnectionInfo

 A number of components make up the core transport architecture implemented by both the Hub
Transport server and Edge Transport server roles. These components as well as other processes and
queues constitute the transport pipeline in Exchange Server 2007. Think of it as a series of processes that
make message delivery or relay possible. Every message sent or received must go through the transport
pipeline. The transport pipeline consists of the following:

❑ SMTP Receive: This component accepts connections on port 25 inbound to the Hub Transport
or Edge Transport servers. This component is controlled by the SMTP Receive Connector, which
is similar to the SMTP virtual server in Exchange Server 2000/2003. It is at this stage of the
transport pipeline that anti - virus and anti - spam agents are implemented to filter incoming con-
nections, message content, determine the sender, and apply any compliance or transport rules
configured. Actual message hygiene or transport rules performed vary slightly depending on
which server role is installed, either the Hub Transport role or Edge Transport role. A series of
events are triggered as the message is received and agents are executed against the message.

c07.indd 192c07.indd 192 12/17/07 3:33:07 PM12/17/07 3:33:07 PM

Chapter 7: Confi guring the Hub Transport Role

193

❑ Submission Queue: After a message is accepted into the organization either from SMTP Receive
or Pickup/Replay directory, it is placed into the Submission queue by the Submission process.
Submission can also occur when the store driver retrieves outbound messages from users ’
 outboxes and places them in the Submission queue. (See Figure 7 - 1 .) This queue is essentially an
ESE database similar to the server mailbox store database. This differs markedly from Exchange
Server 2000/2003 where incoming SMTP messages or messages from the pickup queue were
placed in the Queue folder, a physical NTFS partition.

Figure 7-1

c07.indd 193c07.indd 193 12/17/07 3:33:07 PM12/17/07 3:33:07 PM

Part II: Working with Server Roles

194

 As shown in Figure 7 - 1 , when there are no messages sent or delivered by the Hub Transport the
 Get-Queue cmdlet returns only the Submission queue. Notice that the DeliveryType is undefined and
 NextHopConnector is all zeros. The next hop is the Categorizer. Like any other message queue in
Exchange Server 2007, it can be suspended and resumed. When this is done, the Hub Transport server
no longer processes new incoming messages; rather, the message count continually increases by the
number of new messages received. When the queue is resumed, the Submission queue is de - queued
and messages are picked up once again by the Categorizer. The Suspend-Queue and Resume-Queue
cmdlets are used to pause and resume message queues as shown in Figure 7 - 1 . Notice the change
in queue status when the queue is suspended and when resumed. With the exception of the Submission
queue, for other message queues, the Retry-Queue cmdlet can be used to retry messages in the queue
after a transient failure.

❑ Categorizer: The Categorizer collects and processes messages placed in the Submission queue.
This key component of the transport pipeline is responsible for several functions depending on
whether the transport server is the Hub or Edge server role. On the Edge server, categorization
simply involves routing the submitted message to a delivery queue based on the recipient
 domain. On the Hub Transport server, categorization involves recipient resolution, distribution
list expansion, message content conversion, routing, and application of any rules defined. There-
after message delivery is either MAPI Delivery or Remote Delivery to another Hub server or
Edge Transport server. On the Edge Transport server, unlike the Hub Transport server, after
 categorization, message delivery will always be via Send Connectors to the target destination.
 Figure 7 - 4 shows the transport pipeline exposing two events of the Categorizer: the
OnSubmittedMessage and OnRoutedMessage events.

❑ Local (MAPI) Delivery: This stage of the transport pipeline delivers messages from a Hub
Transport server to a mailbox on a mailbox server in the Active Directory site. After a message
has been categorized and its next hop identified as a mailbox store within the Active Directory
site, the message is moved to the MAPI Delivery queue. The store driver component involved at
this stage connects to the Recipients mailbox store and writes the message to the inbox, after
which the message is deleted from the MAPI Delivery queue. There can be multiple MAPI
 Delivery queues depending on the number of mailbox servers in the local site for which
 messages are destined. Figure 7 - 2 shows local delivery queues to multiple mailbox servers when
the Get-Queue cmdlet is run.

❑ SMTP Send/Remote Delivery: After categorization, messages destined for users not in the local
Active Directory site or for remote SMTP servers or domains are placed in the Remote Delivery
queue. This component is controlled by the SMTP Send Connector, which is similar to the SMTP
Connector in Exchange Server 2000/2003. There can be several Remote Delivery queues and you
may see a separate queue for each remote domain that messages are to be delivered to. If an Edge
 Transport server exists, remote delivery for all Internet domains will be through the Send Connec-
tor to the Edge Transport server. If coexisting with an earlier version of Exchange, messages des-
tined for these servers will be relayed to the routing group where these servers reside. Figure 7 - 3
shows two Remote Delivery queues, one with a deliverytype of SmtpRelayToRemoteAdSite to
a Hub server in a different Active Directory site and another with Deliverytype called
SmtpRelayToTiRg with the next hop being an Exchange 2003 server in the “ First Routing ” group.
The MapiDelivery queue shown is discussed shortly.

c07.indd 194c07.indd 194 12/17/07 3:33:07 PM12/17/07 3:33:07 PM

Chapter 7: Confi guring the Hub Transport Role

195

Figure 7-2

Figure 7-3

c07.indd 195c07.indd 195 12/17/07 3:33:08 PM12/17/07 3:33:08 PM

Part II: Working with Server Roles

196

Figure 7-4

 Finally, after successful delivery, the message is removed from the transport pipeline.

 Please note that there are some Unified Messaging and Client Access instances that do not interact
directly with the transport pipeline. When a sent message is finally put in the outbox on behalf of the
sender, processing occurs by the same process as the submission process described previously.

 To view the Hub Transport pipeline, use the Get-TransportPipeline cmdlet as shown in
Figure 7 - 4 . The TransportPipeline cmdlet also exposes two transport agents installed by default on
the Hub Trans port server: the Journaling Agent and the Transport Rule Agent. Agents are reviewed
in Chapter 9 .

 Messages can enter the transport pipeline through any of four methods:

❑ Through an SMTP Receive Connector communicating on port 25.

❑ Through message files dropped into the Pickup or Replay directories.

❑ Through placement of messages in the Submission queue by the store driver.

❑ Through message submission via an agent.

 In a nutshell, when a message is received by transport either through SMTP communication with
another mail host or dropped into the Pickup or Replay directories, it is placed in the Submission queue
to be picked up and processed by the Categorizer. The message recipients are resolved by the
Categorizer, the message is bifurcated, and it goes through content conversion, after which its route is
determined. If the message is bound for a mailbox on a Mailbox server in the local Active Directory site,
it is routed via the MAPI Delivery and placed in the user ’ s inbox by the store driver component. If the
message is to be routed to a user outside the local Active Directory site or organization, message delivery
is SMTP - based and would be routed via the Remote Delivery queue to a Hub Transport server in

c07.indd 196c07.indd 196 12/17/07 3:33:08 PM12/17/07 3:33:08 PM

Chapter 7: Confi guring the Hub Transport Role

197

another Active Directory site, or to an Edge Transport server for Internet delivery. The message can also
be routed directly from the Hub Transport server if no Edge Transport server is configured.

 Configuring the Hub Transport Server
 The Hub Transport server implements the core transport functionality and is responsible for all message
flow within an Exchange organization. As mentioned earlier, it must be deployed into any Active
Directory site that contains the Mailbox server role. All configuration information for the Hub Transport
server is stored in Active Directory and changes made take effect on all Hub Transport servers in the
organization. By default, the Hub Transport server configures and enables two transport policy and
compliance agents, the Transport Rule Agent and the Journaling Agent. Unified Messaging messages
such as voice and fax messages could bypass transport rules; however, in Exchange Server 2007 SP1
transport rules now act on Unified Messaging messages.

 The Get-TransportServer and Set-TransportServer cmdlets enable you to view and change the
property configuration on the Hub Transport server. Changing the configuration alters how the server
processes messages. These changes are not organization wide, but affect only the specified server. This
differs from the Get-TransportConfig and Set-TransportConfig cmdlets, which enable you to
view and modify transport configuration for the whole Microsoft Exchange Server 2007 organization.

 The Get-TransportServer cmdlet displays transport information for computers running the Hub
Transport or Edge Transport role in the Exchange organization. It has two parameters: Identity for
specifying the Hub Transport server to retrieve its information and DomainController , the fully
qualified domain name of the domain controller used to retrieve the Hub Transport ’ s server information.
These parameters do not apply to the Edge Transport server. The Identity parameter always returns the
local Edge Transport server and the domain controller parameter is not supported on the Edge Transport
server because it is installed in a perimeter network with no access to Active Directory on a domain
controller. Figures 7 - 5 and 7 - 6 display all the transport server settings available on the Hub Transport
server.

 The following section takes a quick look at a couple of the settings.

 DNS Configuration
 By default if InternalDNSAdapterEnabled is set to True , the Hub Transport server will always
use the DNS servers configured on the internal network adapter. This is also the case even if
 ExternalDNSAdapterEnabled is True . If InternalDNSAdapterEnabled is set to False and DNS
servers are manually specified, then the servers listed in the InternalDNSServers parameter will
always be used. The Hub Transport only uses DNS servers specified with the ExternalDNSServers
parameter or the external network adapter when a Send Connector is configured to use it.

 In Figure 7 - 5 , notice that both InternalDNSAdapterEnabled and ExternalDNSAdapterEnabled
parameters are set to True on the transport server. This is the case even if the server is configured
with a single network card. The DNS server(s) specified on the network card is used. Also, both
 InternalDNSAdapterGuid and ExternalDNSAdapterGuid are all zeros, indicating that DNS lookups
will be performed using any available adapter on the server. To use a list of DNS servers other than those
on the adapter, first disable InternalDNSAdapterEnabled and ExternalDNSAdapterEnabled by
setting them to false using the Set-TransportServer cmdlet, then specify the DNS servers using
the ExternalDNSServers or InternalDNSServers parameter. If multiple adapters exist and you

c07.indd 197c07.indd 197 12/17/07 3:33:08 PM12/17/07 3:33:08 PM

Part II: Working with Server Roles

198

Figure 7-5

c07.indd 198c07.indd 198 12/17/07 3:33:09 PM12/17/07 3:33:09 PM

Chapter 7: Confi guring the Hub Transport Role

199

intend to use a specific adapter, specify the adapter by its GUID. The GUID can be obtained using the
Get-NetworkConnectionInfo cmdlet.

 Figure 7 - 7 shows how to configure the transport server to use a specific adapter for internal and external
lookup by specifying its GUID and view changes made.

 Back Pressure
 Hub Transport and Edge Transport servers monitor important system resources using the back pressure
feature. System resources monitored include available disk space and memory. This feature enables
transport servers to reject new connections and messages when a configured resource threshold is
reached. In the RTM release of Exchange Server 2007, the disk resource limit was 4GB, hence if a Hub
Transport server has less than 4GB of drive space all new mail processing stops. However, this has been
changed to 500MB in Exchange Server 2007 SP1. The configuration options for back pressure can be
modified in the EdgeTransport.exe.config application configuration file.

Figure 7-6

c07.indd 199c07.indd 199 12/17/07 3:33:09 PM12/17/07 3:33:09 PM

Part II: Working with Server Roles

200

Figure 7-7

 Priority Queuing
 Priority queuing is new to Exchange Server 2007 SP1 and allows Hub Transport servers to process
messages based on the priority defined by the sender (Low, Normal, High). As discussed earlier in this
chapter, after a message is categorized, it is placed in a delivery queue, either local (MAPI) or remote
delivery. With the Priority Queuing feature enabled, all messages placed in a specific delivery queue are
processed to their destination based on the message priority stored in the X - Priority header field. As
with the back pressure feature, the configuration options priority queuing can be modified in the
 EdgeTransport.exe.config application configuration file. However, the settings configured override
the limits set by the Set-TransportServer cmdlet (discussed in the following section). Figure 7 - 8
shows timeout values configured on the Hub server.

Figure 7-8

c07.indd 200c07.indd 200 12/17/07 3:33:09 PM12/17/07 3:33:09 PM

Chapter 7: Confi guring the Hub Transport Role

201

Figure 7-9

 Transport Server Limits
 Several limits that apply to message and connection retry attempts, message expiration, connection
limits, and restrictions can be set on the Hub server. Using the Set-TransportServer cmdlet you can
modify these settings. For example, when a message delivery fails due to a transient failure, it continually
retries and expires after two days. You can change the MessageExpirationTimeout value within the
range of 1 and 90 days. The same applies to the transport log settings for the message tracking,
connectivity, and Protocol logs. Figure 7 - 9 shows how to modify message expiration timeout settings.

 Creating and Modifying Connectors
 Connectors determine the path a message takes when routed between servers within an organization, to
and from the Internet, and between messaging organizations. They provide single direction or one - way
connections between a source server and a destination server. In Exchange Server 2007, at least four
types of connectors can be explicitly created and configured. These include the Send Connector, Receive
Connector, Routing Group Connector, and Foreign Connector. There also exists implicitly created Send

c07.indd 201c07.indd 201 12/17/07 3:33:10 PM12/17/07 3:33:10 PM

Part II: Working with Server Roles

202

or Receive Connectors created on Hub Transport server ’ s internal mail flow within the Active Directory
site and across Active Directory sites in an Exchange Server 2007 forest. This enables Hub Transport
servers to communicate with each other. Hence, you do not have to configure any connectors between
Hub Transport servers within the Active Directory forest. If an Edge Transport server exists in the
organization, the Edge Subscription process is recommended to automatically create and configure
connectors between the Edge Transport server and a Hub Transport server in a designated Active
Directory site. The following cmdlets are covered in this section; some are discussed later in more detail.

❑ Get-SendConnector

❑ Set-SendConnector

❑ New-SendConnector

❑ Remove-SendConnector

❑ Get-ReceiveConnector

❑ Set-ReceiveConnector

❑ New-ReceiveConnector

❑ Remove-SendConnector

❑ Format-List

❑ Get-TransportConfig

❑ Set-TransportConfig

❑ Get-ADPermission

 New - ReceiveConnector
 The New - ReceiveConnector cmdlet creates a new Receive Connector. The Name, Bindings, and,
RemoteIPRanges are required parameters. The following switch parameters are important to note: Custom ,
 Client , Partner , Internal , and Internet . These indicate the types of Receive Connectors that can be
created. They can be specified separately or using the Usage parameter but cannot be used in conjunction
with this parameter. If no usage type is specified, the default usage type of custom will be used.

❑ Custom < SwitchParameter > : This parameter can be used to specify the custom usage type.
The usage type specifies the default permission groups and authentication methods that are
assigned to this connector. The Custom Receive Connector is a customized connector used to
connect systems that are not Exchange servers.

❑ Client < SwitchParameter > : This parameter can be used to specify the client usage type.
The usage type specifies the default permission groups and authentication methods that are
 assigned to this connector. The Client Receive Connector is used to receive email from users
of Microsoft Exchange. It is configured to accept client submissions only from authenticated
 Microsoft Exchange users.

❑ Internal < SwitchParameter > : This parameter can be used to specify the internal usage type.
The usage type specifies the default permission groups and authentication methods that are
assigned to the Receive Connector. The Internal Receive Connector is used to receive email from
servers within the Exchange organization. It is configured to accept connections only from
Exchange Servers.

c07.indd 202c07.indd 202 12/17/07 3:33:10 PM12/17/07 3:33:10 PM

Chapter 7: Confi guring the Hub Transport Role

203

❑ Internet < SwitchParameter > : This parameter can be used to specify the Internet usage type.
The usage type specifies the default permission groups and authentication methods that are as-
signed to this connector. The Internet Receive Connector is used to receive email from Internet
servers. It is configured to accept connections from anonymous users.

❑ Partner < SwitchParameter > : This parameter can be used to specify the partner usage type.
The usage type specifies the default permission groups and authentication methods that are
 assigned to this connector. The Partner Receive Connector is used to receive email from partner
domains. This connector is configured to accept connections from servers that authenticate with
Transport Layer Security (TLS) certificates for SMTP domains that are included in the list of
 domain - secured domains. You can use the TLSReceiveDomainSecureList parameter of the
 Set-TransportConfig cmdlet to add domains to this list.

 New - SendConnector
 The New-SendConnector cmdlet is used to create new Send Connectors in Exchange Server 2007.
Required parameters include AddressSpaces and name . The following switch parameters, Custom ,
 Partner , Internal , and Internet , indicate the four types of Send Connectors that can be created in
Exchange Server 2007. They can be specified separately or using the Usage parameter but cannot be
used in conjunction with this parameter. If no usage type is specified, the default usage type of custom
will be used to create the Send Connector. These switch parameters are discussed further in the
following list:

❑ Custom < SwitchParameter > : This parameter can be used to specify the custom usage type.
The usage type specifies no default permissions and no authentication methods to the Send
Connector. This connector will be used to connect with systems that are not Exchange Servers.

❑ Internal < SwitchParameter > : This parameter can be used to specify the internal usage type.
The usage type specifies the default permission groups and authentication methods that are
assigned to the Send Connector. The Internal Send Connector is used to send email
from servers within the Exchange organization. It is configured to route email to internal
 Exchange Servers as smart hosts.

❑ Internet < SwitchParameter > : This parameter can be used to specify the Internet usage type.
The usage type specifies the default permissions and authentication methods that are assigned
to this connector. This Send Connector is used to send emails to the Internet and configured to
use DNS MX records to route messages.

❑ Partner < SwitchParameter > : This parameter can be used to specify the partner usage type.
The usage type specifies the default permissions and authentication methods that are assigned
to this connector. The Partner Send Connector is used to send email to partner domains. This
connector is configured to only allow connections to servers that authenticate with Transport
Layer Security (TLS) certificates for SMTP domains that are included in the list of domain -
 secured domains. You can use the TLSReceiveDomainSecureList parameter of the
 Set-TransportConfig cmdlet to add domains to this list.

 Configuring Receive Connectors
 The Receive Connector is identical in some ways to the SMTP virtual server in Exchange Server 2003. It
listens for incoming SMTP connections and accepts or rejects them based on its configuration. The
Receive Connector is configured with an IP address, a listening port, and the range of IP addresses that

c07.indd 203c07.indd 203 12/17/07 3:33:10 PM12/17/07 3:33:10 PM

Part II: Working with Server Roles

204

can submit messages to it. In reality, though, it is the MSExchangetransport.exe service, otherwise
known as the Process Manager, that actively listens for incoming requests. Requests are acted upon
by an existing or new transport worker (Edgetransport.exe) process spurned by the Process
Manager. Edgetransport.exe accepts the incoming SMTP connection, evaluates the connection
criteria (IP address, port, remote IP range) and applies the session to a matching Receive Connector.
Communication is always SMTP - based and each Receive Connector must have a unique combination
of local IP address, port, and remote IP range configurations throughout the organization. In Exchange
Server 2003, you could create multiple SMTP virtual servers but they had to be unique to either a port
or IP address. In Exchange Server 2007, you can create multiple Receive Connectors with the same
IP address and port; however, the remote IP range must be unique.

 On a Hub Transport server, two Receive Connectors are created by default as shown in Figure 7 - 10 . The
bindings indicate that the Receive Connectors are configured to listen on all IP addresses on available
network adapters on the server and on the designated ports. The Default Receive Connector is configured
to listen on port 25 while the Client Receive Connector listens on port 587. The Client Receive Connector
accepts SMTP connections from all non - MAPI clients, such as POP and IMAP. To view all the properties
on both Receive Connectors, use the Format-List cmdlet in addition to the Get-ReceiveConnector
cmdlet. A basic difference between both connectors besides the bindings is the permissiongroups
attribute also shown in Figure 7 - 10 . This makes sense because only non - MAPI clients connect to the
Client Receive Connector.

Figure 7-10

 As mentioned earlier, to create a new Receive Connector, use the New-ReceiveConnector cmdlet. The
Name, Bindings, and RemoteIPRanges are required parameters. You can create a Receive Connector
based on its intended use. The following switch parameters, Custom , Client , Partner , Internal , and
 Internet , indicate the types of Receive Connectors that can be created in Exchange Server 2007. They
can be specified separately or using the Usage parameter but cannot be used in conjunction with this
parameter. If no usage type is specified, the default usage type of custom will be set; and a Receive
Connector identical in attributes to the Default Receive Connector with the exception of the specified
parameters is created.

c07.indd 204c07.indd 204 12/17/07 3:33:11 PM12/17/07 3:33:11 PM

Chapter 7: Confi guring the Hub Transport Role

205

 Note that in Exchange Server 2007 SP1, you must specify a usage type when using the
 New-ReceiveConnector cmdlet. Also note that Exchange Server 2007 SP1 supports the Internet
Protocol Version 6 (IPv6) addresses and when deployed on Windows Server 2008, you can specify both
IPv4 and IPv6 addresses for the RemoteIPRange parameter. Figure 7 - 11 shows how to create a new
 Receive Connector, and then display the connectors created with differences in authentication methods
and permission groups. Some connectors have been created in advance.

Figure 7-11

c07.indd 205c07.indd 205 12/17/07 3:33:11 PM12/17/07 3:33:11 PM

Part II: Working with Server Roles

206

 Next, you use the Remove-ReceiveConnector cmdlet to bulk remove the connectors created, as shown
in Figure 7 - 12 .

Figure 7-12

 Setting Relay Restrictions and Submit Permissions
 After creating the Receive Connector, you can control how messages flow through the connector. In
Exchange Server 2000/2003, you could configure relay restrictions to determine if messages could be
relayed to users not in the Exchange organization. You could also configure permissions to determine
who could submit a message to the SMTP virtual server. The same can be accomplished in Exchange
Server 2007 when you specify permission groups for the connector. In Figure 7 - 11 you saw the
permission groups assigned to each type of Receive Connector created. There are specific permissions
associated with these permission groups. For example, the ms-Exch-SMTP-Accept-Any-Recipient
permission allows the session to relay messages through the connector. To view the permissions, use the
 Get-ADPermission cmdlet in conjunction with the Get-ReceiveConnector cmdlet, as shown in
Figure 7 - 13 . Such granular changes can be made directly to Active Directory or by using the
Add/Remove-ADPermission cmdlet. On the other hand, the Set-ReceiveConnector cmdlet can be
used to add/remove permission groups.

 For example, you may have created a Receive Connector with a Partner domain. By default the
permission group associated with that connector allows for the partner server account to submit
(ms-Exch-SMTP-Submit) messages and retain all the receive headers (ms-Exch-Accept-Headers-Routing)
over a secure TLS session. If due to acquisition or some other valid reason you later choose to allow the
partner server account to relay messages through the connector, then simply grant the granular permission
Ms-Exch-SMTP-Accept-Any-Recipient or add the ExchangeUsers permission group to the Receive
Connector, as shown in Figure 7 - 14 .

 Notice that when using the Set-ReceiveConnector cmdlet with permission groups, you have to write
all the permissions over again and not simply the permission you want to add, or else the existing
permissions are overwritten.

c07.indd 206c07.indd 206 12/17/07 3:33:11 PM12/17/07 3:33:11 PM

Chapter 7: Confi guring the Hub Transport Role

207

Figure 7-13

 Several other configurable attributes exist on each Receive Connector and can be modified using the
 Set-ReceiveConnector cmdlet. These include changing the response banner for the server,
 MaxMessageSize limit, MessageRateLimit , and so forth. For a detailed list of attributes that can be
configured, run get-help set-receiveconnector -detailed in the Exchange Management Shell.

c07.indd 207c07.indd 207 12/17/07 3:33:12 PM12/17/07 3:33:12 PM

Part II: Working with Server Roles

208

 Configuring Send Connectors
 Send Connectors provide one - way outbound connections to a next hop or final destination for message
delivery. They are functionally the same as SMTP connectors in Exchange Server 2000/2003 and can be
configured to use DNS to route mail or forward to a smart host. They can be configured to send mail to
other SMTP servers on the Internet, an Edge Transport server, or an Exchange 2000/2003 server in the
same organization.

 Unlike the Receive Connectors, by default when a Hub Transport or Edge Transport server is installed
no explicit Send Connectors are created. However, to enable Hub Transport servers within an Exchange
organization to communicate, implicit or invisible Send Connectors are automatically created. The Send
Connectors are computed based on the Active Directory site topology and the site where the Hub server
is installed. These implicit connectors are, however, not visible via the Exchange Management Console or
Exchange Management Shell.

 To create a Send Connector, use the New-SendConnector cmdlet. Required parameters include
AddressSpaces and name . Three parts make up address spaces: the address space type, the address
itself, and the cost of delivery to that address. It takes the following format: SMTP:ExchangeExchange
.local;10 representing the type, address, and cost, respectively. The Send Connector can accommodate
address space types other than SMTP, such as NOTES, FAX, and so forth. Send Connectors configured
with address spaces that are non - SMTP must be configured to route to a smart host and not use DNS for
resolution and delivery. You can also specify multiple address spaces but they must be enclosed in
double quotation marks and separated by commas.

 In configuring a Send Connector, you can also specify its scope. The IsScopedConnector parameter set
to $True indicates that the Send Connector is scoped to the local Active Directory site. What this means
is that this connector will only be visible by Hub Transport servers that are in the same local Active
Directory site as the Source servers configured on the Send Connector. It is not available to Hub servers
in other Active Directory sites. The default value is $False . This parameter is new in Exchange
Server 2007 SP1.

Figure 7-14

c07.indd 208c07.indd 208 12/17/07 3:33:12 PM12/17/07 3:33:12 PM

Chapter 7: Confi guring the Hub Transport Role

209

Figure 7-15

Figure 7-16

 Next in Figure 7 - 16 , using the Format-List cmdlet provides both Send Connectors, noting the
difference in scope for both connectors.

 In Figure 7 - 15 , two new connectors with different usage types are created. However, for the second
connector the IsScopedConnector parameter limits its visibility to only Hub Transport servers in the
local Active Directory site.

c07.indd 209c07.indd 209 12/17/07 3:33:12 PM12/17/07 3:33:12 PM

Part II: Working with Server Roles

210

 Setting Send Connector Permissions and Authentication
 Like the Receive Connector, the Send Connector is associated with certain permissions based
on the type of Send Connector configured. The custom type has no default permissions.
The internal connector is configured for Exchange Server Authentication and has the following
permission settings: ms-Exch-Send-Headers-Organization , ms-Exch-SMTP-Send-Exch50 ,
ms-Exch-SMTP-Send-Exch50 , and ms-Exch-Send-Headers-Routing . The Internet - type Send
Connector has ms-Exch-Send-Headers-Routing granted to the Anonymous user with no host
authentication mechanism. Send Connectors connecting to Partner domains grant the Partner
servers the ms-Exch-Send-Headers-Routing permission and can negotiate transport security.

 You can modify various parameters on the Send Connector as well as remove the Send Connectors
using the Set-SendConnector and Remove-SendConnector cmdlets. Figure 7 - 17 shows how to
increase the MaxMessageSize of the Send Connectors, increase logging level, and modify the scope of
the Partner Send Connector to be visible throughout the Exchange organization. Finally, you remove all
configured connectors.

Figure 7-17

 Linking Connectors
 Under certain circumstances, Send and Receive Connectors could be linked in such a way that messages
received via a specific Receive Connector are always sent out via a designated Send Connector. Some
organizations contract out their spam filtering solution to a vendor that checks these messages for spam
or email compliance and then pushes them back into the organization for delivery. In such cases Linked
Connectors could be used to direct the mail flow regardless of recipient address.

c07.indd 210c07.indd 210 12/17/07 3:33:13 PM12/17/07 3:33:13 PM

Chapter 7: Confi guring the Hub Transport Role

211

Figure 7-18

 Figure 7 - 18 shows creating the Receive Connector and corresponding Send Connector, then linking
both connectors. Note that you would have to specify a smart host to ensure that mail gets delivered
as required.

c07.indd 211c07.indd 211 12/17/07 3:33:13 PM12/17/07 3:33:13 PM

Part II: Working with Server Roles

212

 Configuring a Routing Group Connector
 When migrating to Exchange Server 2007 from an Existing Exchange 2000/2003 environment, there may
be a period of coexistence whereby Exchange Server 2007 computers must communicate with Exchange
Server 2000/2003. A Routing Group Connector is required for this communication to take place. When
the first Exchange Server 2007 computer is installed into the organization, a Routing Group Connector is
automatically created. To manually create this connector to another routing group, use the following
command. This also enables public folder referral.

New-RoutingGroupConnector -Name “Coexist RGC” -SourceTransportServers
“HT001.ExchangeExchange.local” -TargetTransportServers “ExB.ExchangeExchange.local”
 -Cost 100 -Bidirectional $true -PublicFolderReferralsEnabled $true

 Service Pack 1 for Exchange Server 2007 introduced support for configuring a limit on the Routing
Group Connector, hence the MaxMessageSize parameter. This parameter existed on other connectors
but not the Routing Group Connector. To set the MaxMessageSize for an existing connector, simply pass
the Set-RoutingGroupConnector to the output of the Get-RoutingGroupConnector as shown here:

Get-RoutingGroupConnector | Set-RoutingGroupConnector -MaxMessageSize 50MB

 Configuring Foreign Connectors
 Foreign Connectors enable third - party vendors using non - SMTP gateways to route messages to foreign
mail systems via Exchange Server 2007. This could include but is not limited to FAX systems. Exchange
Server 2007 provides Foreign Connectors, which enables these messages to be placed in a drop directory
to be picked up by the third - party mail system.

 In the queue viewer the next hop type for these messages is identified by NonSmtpGatewayDelivery
queue with the actual hop being the GUID of the Foreign Connector.

 While the New-ForeignConnector cmdlet is used to create a new Foreign Connector, the Get/Set/
Remove-ForeignConnector cmdlets can be used to view and modify the connector. Among other
things that can be modified is the drop directory where messages are deposited to be picked up by the
third - party ’ s mail system. You use the following command to create a new Foreign Connector:

New-ForeignConnector -Name “FAX Foreign Connector” -AddressSpaces
“FAX:*.contoso.com;5” -SourceTransportServers “HT001”

 Active Directory IP Site Links
 Thus far, you ’ ve seen the various connectors that can be configured in Exchange Server 2007. Although
connectors control the direction a message will take, Exchange Server 2007 takes advantage of the Active
Directory topology and routes messages based on available Active Directory sites. In Exchange Server
2000/2003, routing was based on logical groupings of servers into routing groups. We discuss this
further in Chapter 11 .

 Most Exchange Administrators do not have permissions to administer the Active Directory Sites and
may not have control over the path that an email could traverse in a large Active Directory site. Two
things can be done in this situation. An administrator may choose to specify a Hub site using
the Set-ADSite cmdlet. This forces all mail flow in that path through the Hub Transport servers in

c07.indd 212c07.indd 212 12/17/07 3:33:13 PM12/17/07 3:33:13 PM

Chapter 7: Confi guring the Hub Transport Role

213

the designated Hub site before they are routed to their final destination. Something else available to an
Exchange administrator is the ability to introduce an Exchange - aware attribute to existing Active
Directory site links, which Exchange Server 2007 servers will consider while routing between sites. This
is a cost value assigned to each IP site link evaluated by Exchange Server 2007. Messages will then be
routed based on lower - cost IP site links overriding existing Active Directory site link costs. This change
is made using the Set-ADSiteLink cmdlet.

 As with the Routing Group Connector, Exchange Server 2007 SP1 now enables you to configure a
 MaxMessageSize parameter for the ADSiteLink . A Non Delivery Report (NDR) is generated if a
message is over the specified limit.

 To designate an Active Directory site as a Hub site, use the following cmdlet:

Set-AdSite -Identity “Site A” -HubSiteEnabled $true

 To set the MaxMessageSize to the ADSiteLink use the following cmdlet:

Set-AdSiteLink -Identity DEFAULTIPSITELINK -ExchangeCost 25 -MaxMessageSize 50MB

 Understanding Accepted Domains and
Email Address Policies

 Before concluding this chapter, a few words on email address policies and accepted domains is required,
because these play a huge role in email address resolution and mail routing. The following cmdlets can
be used to view and change accepted domains:

❑ Get-AcceptedDomain

❑ Set-AcceptedDomain

❑ New-AcceptedDomain

❑ Remove-AcceptedDomain

❑ Get-RemoteDomain

❑ Set-RemoteDomain

❑ New-RemoteDomain

❑ Remove-RemoteDomain

❑ Get-EmailAddressPolicy

❑ Set-EmailAddressPolicy

❑ New-EmailAddressPolicy

❑ Remove-EmailAddressPolicy

❑ Update-EmailAddressPolicy

c07.indd 213c07.indd 213 12/17/07 3:33:14 PM12/17/07 3:33:14 PM

Part II: Working with Server Roles

214

 Accepted Domains
 Accepted domains are used to identify which domains the Exchange Server organization is authoritative
for and thus can accept mails, and which domains it is not authoritative for and perhaps can relay mail
for or return to sender. Hence, an Exchange organization will send and receive mail for an accepted
domain. In Exchange Server 2007 non - authoritative domains are further segmented into internal
relay domains and external relay domains. Authoritative and internal relay domains are considered to be
inside the Exchange organization. Exchange accepts messages for internal relay domains and attempts to
route them to a connector that can deliver the message. Both authoritative and internal relay domains
can impact Email address policies and transport rules.

 Exchange, on the other hand, can be configured with an external relay domain. They are identical in
functionality with the internal relay domains; however, with external domains, the messages are
received and processed by the Edge server, and then relayed to the destination email system. External
relay domains cannot be used for email address policies.

 Use the Get-AcceptedDomain and Set/New/Remove-AcceptedDomain cmdlets to view and modify
the Accepted domains.

 Email Address Policies
 Email address policies dictate the formatting of addresses on mail - enabled objects in the Exchange
organization. Email policies formally known as Recipient Policies in Exchange 2000/2003 determine
what proxy addresses are stamped on mail - enabled objects in Active Directory. Exchange Server 2007
only supports two address types: SMTP and Custom. Email address policies generate the primary and
secondary email addresses for recipient objects to enable them to receive and send email.

 Exchange Server 2007 has an email address policy for each user that is mail - enabled. By default, the
recipient alias is used as the local part of the recipient ’ s email address and the default accepted domain is
appended after the “ @ ” sign. Hence, a mail - enabled user will have an address such as alias@
accepteddomain.com (Trainee9@ExchangeExchange.local). However, you can change how your
recipients ’ email addresses will display. For example, you can specify that your recipients ’ email
addresses display as firstname.lastname@ExchangeExchange.local .

 Email addresses are applied to user and other mail - enabled objects when created. To force the email
address policies to re - evaluate the mail - enabled objects, use the Update-EmailAddressPolicy cmdlet.

 Summary
 Thus far, you have seen how much Exchange Server 2007 differs from earlier versions of Exchange in its
transport functionality. The core transport architecture was re - written and transport improvements made
in Exchange Server 2007 SP1 also make for reliable mail flow across an Exchange organization. The
changes in core transport architecture changed the way messages are delivered in an Exchange
organization. Without the presence of at least one Hub Transport server in an Active Directory site, there
can be no mail flow. The Hub Transport server, as you have seen, implements the core transport
functionality and serves to ensure intra - organizational email communication and compliance.

c07.indd 214c07.indd 214 12/17/07 3:33:14 PM12/17/07 3:33:14 PM

Chapter 7: Confi guring the Hub Transport Role

215

 Additionally, this chapter showed the various connectors that can be created in Exchange Server 2007.
Send Connectors and Receive Connectors are generally used to control message flow, however other
connectors also can be configured such as Linked Connectors, Routing Group Connectors, and Foreign
Connectors. With the creation of Send Connectors and Receive Connectors, several usage types are
possible, which specify the authentication mechanism and permission groups to be associated with that
connector. As you will recall, by default two explicit Receive Connectors are created with the installation
of the Hub Transport server role and no explicit Send Connectors are installed; however, an implicit
Send Connector exists to enable Hub Transport servers in the same Active Directory site exchange email
messages. Hence no explicit Send Connectors are required to configure mail flow between Hub
Transport servers in the same Active Directory site. Finally, we briefly reviewed the concept of accepted
domains and email address policies.

c07.indd 215c07.indd 215 12/17/07 3:33:14 PM12/17/07 3:33:14 PM

c07.indd 216c07.indd 216 12/17/07 3:33:14 PM12/17/07 3:33:14 PM

 Configuring the Mailbox
Server Role

 The Mailbox role is at the heart of the server roles. Mailbox and public folder data is stored on
the Mailbox role. Other processes, such as managed folders and address book generation run
on the Mailbox role. Unlike previous versions, the mailbox server does not send or receive mail
without going through a hub transport.

 The Mailbox role can be configured for high availability using traditional clustering or a few new
options. High - availability options are discussed in Chapter 12 .

 This chapter covers:

❑ Creating a mailbox store and database

❑ Configuring a mailbox store and database

❑ Recovering mailbox data with Recovery Storage Groups

 Storage Groups
 Exchange groups mailboxes into logical units called databases. Exchange groups databases
together to share a set of transaction log files and this database group is called a storage group.
New to Exchange Server 2007 is the ability to have up to 50 databases distributed in up to
50 storage groups. However, there is still a maximum of five databases in one storage group.
It is a best practice to have one database per storage group. Another change from previous
versions is that the streaming database has been removed.

c08.indd 217c08.indd 217 12/17/07 5:28:36 PM12/17/07 5:28:36 PM

Part II: Working with Server Roles

218

 Some of the cmdlets that are used in working with storage groups are:

❑ New-StorageGroup

❑ Move-StorageGroupPath

❑ Remove-StorageGroup

 Creating Storage Groups
 After installation of the Mailbox role an initial storage group will be created. Most of the mailbox man-
agement can be done with the Exchange Management Console (EMC). One nice feature of the console is
that it will show the PowerShell command after executing the operation. The New-StorageGroup
cmdlet is used to create new storage groups:

New-StorageGroup -Name < String > -Server < ServerIdParameter >
[-CircularLoggingEnabled < $true | $false >] [-CopyLogFolderPath
 < NonRootLocalLongFullPath >] [-CopySystemFolderPath
 < NonRootLocalLongFullPath >] [-DomainController < Fqdn >] [-HasLocalCopy
 < $true | $false >] [-LogFolderPath < NonRootLocalLongFullPath >]
[-SystemFolderPath < NonRootLocalLongFullPath >] [-TemplateInstance
 < PSObject >] [-ZeroDatabasePages < $true | $false >]

New-StorageGroup [-Name < String >] -Recovery < SwitchParameter > -Server
 < ServerIdParameter > [-DomainController < Fqdn >] [-LogFolderPath
 < NonRootLocalLongFullPath >] [-SystemFolderPath < NonRootLocalLongFullPath >]
[-TemplateInstance < PSObject >]

 The LogFolderPath and SystemFolderPath parameters set the location of the log and system files for
the storage group. The parameters are used to set the location and properties associated with the log files.
The parameter CircularLoggingEnabled is used to enable circular logging. By default, the parameter
is set to false , meaning circular logging is not enabled. The recovery storage group parameter is to set
up the new storage group for recovery. Recovery Storage Groups (RSG) are covered later in this chapter.

 The following example creates a new storage group on the server MB001, and sets the location of the log
and system folders:

New-StorageGroup -Name “Storage Group 2” -Server MB001
-LogFolderPath “D:\Logs\Second Storage Group”
-SystemFolderPath “D:\Logs\Second Storage Group”

 Moving Storage Groups
 One administrative task for storage groups is to move their location. During the move, all databases in
the storage group will be dismounted and unavailable for clients. The Move-StorageGroupPath cmdlet
must be run locally on the mailbox server. Also note that the path cannot be at the root of the drive. This
cmdlet has most of the same parameters as the New-StorageGroup cmdlet:

Move-StorageGroupPath -Identity < StorageGroupIdParameter >
[-ConfigurationOnly < SwitchParameter >] [-CopyLogFolderPath
 < NonRootLocalLongFullPath >] [-CopySystemFolderPath
 < NonRootLocalLongFullPath >] [-DomainController < Fqdn >] [-Force

c08.indd 218c08.indd 218 12/17/07 5:28:38 PM12/17/07 5:28:38 PM

Chapter 8: Confi guring the Mailbox Server Role

219

 < SwitchParameter >] [-LogFolderPath < NonRootLocalLongFullPath >]
[-SystemFolderPath < NonRootLocalLongFullPath >]

Move-StorageGroupPath -Identity “First Storage Group” -LogFolderPath “C:\SG\SG1”
-SystemFolderPath “C:\SG\SG1”

 Removing Storage Groups
 Another task is to remove storage groups. Before removing a storage group, all databases must be
removed. After running the Remove-StorageGroup cmdlet, the log files must be manually removed
with Windows Explorer or the del cmdlet. The syntax for Remove-StorageGroup is:

Remove-StorageGroup -Identity < StorageGroupIdParameter > [-DomainController < Fqdn >]

 Removing the storage group from the previous example would look like this:

Get-MailboxDatabase -StorageGroup “mb001\Storage Group 2” | Remove-MailboxDatabase
Remove-StorageGroup -Identity “MB001\Storage Group 2”

 Mailbox Stores
 Mailbox stores, or databases, are where all of the user and public folder data is stored. Each storage
group can contain up to five databases. Each database can be mounted or un - mounted independently.

 Cmdlets used for managing mailbox stores are:

❑ New-MailboxDatabase

❑ Set-MailboxDatabase

❑ Get-MailboxDatabase

❑ Remove-MailboxDatabase

 Creating Databases
 The New-MailboxDatabase cmdlet creates the database object. The location of the database file (.edb)
is mandatory, as is the identity of the storage group where the database will exist:

New-MailboxDatabase -Name < String > -StorageGroup < StorageGroupIdParameter >
 [-CopyEdbFilePath < EdbFilePath >] [-DomainController < Fqdn >] [-EdbFilePath
 < EdbFilePath >] [-HasLocalCopy < $true | $false >] [-OfflineAddressBook
 < OfflineAddressBookIdParameter >] [-PublicFolderDatabase
 < DatabaseIdParameter >] [-TemplateInstance < PSObject >]

New-MailboxDatabase [-Name < String >] -MailboxDatabaseToRecover
 < DatabaseIdParameter > -StorageGroup < StorageGroupIdParameter > [-DomainController

(continued)

c08.indd 219c08.indd 219 12/17/07 5:28:38 PM12/17/07 5:28:38 PM

Part II: Working with Server Roles

220

 < Fqdn >] [-EdbFilePath < EdbFilePath >] [-TemplateInstance
 < PSObject >]

New-MailboxDatabase -StorageGroup “mb100\Storage Group 2” -Name “Mailbox Database
2” -EdbFilePath “C:\SG2\Database\DB2.edb”

 Configuring Databases
 One common task is to set the quota level for users. Quotas can be either set at the database level or per -
 user. It is common to set the default levels at the mailbox database, and override as needed at the user
object. Quotas and other parameters are set with the Set-MailboxDatabase cmdlet.

 There are three available quota settings:

❑ IssueWarningQuota : When the user reaches this threshold, the system will generate an email
warning him about his quota.

❑ ProhibitSendQuota : When the user reaches this threshold the system will prohibit the user
from sending new mail. This setting must be equal or greater than the IssueWarningQuota
value.

❑ ProhibitSendReceiveQuota : When the user reaches this threshold the system will prohibit
the user from sending mail, and will not deliver new mail to the user ’ s mailbox. This setting
must be equal or greater than the IssueWarningQuota and ProhibitSendQuota values.

Set-MailboxDatabase -Identity < DatabaseIdParameter > [-AllowFileRestore
 < $true | $false >] [-DeletedItemRetention < EnhancedTimeSpan >]
[-DomainController < Fqdn >] [-EventHistoryRetentionPeriod
 < EnhancedTimeSpan >] [-IndexEnabled < $true | $false >] [-IssueWarningQuota
 < Unlimited >] [-JournalRecipient < RecipientIdParameter >] [-MailboxRetention
 < EnhancedTimeSpan >] [-MaintenanceSchedule < Schedule >] [-MountAtStartup
 < $true | $false >] [-Name < String >] [-OfflineAddressBook
 < OfflineAddressBookIdParameter >] [-ProhibitSendQuota < Unlimited >]
[-ProhibitSendReceiveQuota < Unlimited >] [-PublicFolderDatabase
 < DatabaseIdParameter >] [-QuotaNotificationSchedule < Schedule >]
[-RetainDeletedItemsUntilBackup < $true | $false >]

Set-MailboxDatabase [-AllowFileRestore < $true | $false >]
[-DeletedItemRetention < EnhancedTimeSpan >] [-DomainController < Fqdn >]
[-EventHistoryRetentionPeriod < EnhancedTimeSpan >] [-IndexEnabled < $true |
$false >] [-Instance < MailboxDatabase >] [-IssueWarningQuota < Unlimited >]
[-JournalRecipient < RecipientIdParameter >] [-MailboxRetention
 < EnhancedTimeSpan >] [-MaintenanceSchedule < Schedule >] [-MountAtStartup
 < $true | $false >] [-Name < String >] [-OfflineAddressBook
 < OfflineAddressBookIdParameter >] [-ProhibitSendQuota < Unlimited >]
[-ProhibitSendReceiveQuota < Unlimited >] [-PublicFolderDatabase
 < DatabaseIdParameter >] [-QuotaNotificationSchedule < Schedule >]
[-RetainDeletedItemsUntilBackup < $true | $false >]

(continued)

c08.indd 220c08.indd 220 12/17/07 5:28:38 PM12/17/07 5:28:38 PM

Chapter 8: Confi guring the Mailbox Server Role

221

 This example sets the quotas for the database. One cool feature of PowerShell is the ability to specify the
units, so it is not necessary to convert between megabytes and gigabytes.

Set-MailboxDatabase -Identity “mb100\mailbox database” -IssueWarningQuota 512MB -
ProhibitSendReceiveQuota 1GB

 This cmdlet when viewed with the management console looks like Figure 8 - 1 .

Figure 8-1

 Two settings related to recovery are MailboxRetention and DeletedItemRetention
. MailboxRetention specifies the length of time to keep deleted mailboxes. The default in Exchange
Server 2007 is 30 days, and can be configured to a maximum of 24,855 days. The section on managing
mailboxes explains deleted mailboxes and how to reconnect them.

c08.indd 221c08.indd 221 12/17/07 5:28:39 PM12/17/07 5:28:39 PM

Part II: Working with Server Roles

222

 DeletedItemRetention specifies the length of time to keep deleted items that have been emptied from
the deleted items folder or hard - deleted using SHIFT + Delete. The default in Exchange 2007 is 14 days,
and can be configured to a maximum of 24,855 days. Deleted items are recoverable with the Outlook
client or with Outlook Web Access in Exchange Server 2007 Service Pack 1. This setting will apply to all
users in the database unless the users have their own retention time set.

 To view the current settings on existing mailbox databases, use the Get-MailboxDatabase cmdlet:

Get-MailboxDatabase [-Identity < DatabaseIdParameter >] [-DomainController
 < Fqdn >] [-IncludePreExchange2007 < SwitchParameter >] [-Status
 < SwitchParameter >]

Get-MailboxDatabase -Server < ServerIdParameter > [-DomainController < Fqdn >]
[-IncludePreExchange2007 < SwitchParameter >] [-Status < SwitchParameter >]

Get-MailboxDatabase -StorageGroup < StorageGroupIdParameter >
[-DomainController < Fqdn >] [-IncludePreExchange2007 < SwitchParameter >]
[-Status < SwitchParameter >]

 The IncludePreExchange2007 parameter returns information about pre - Exchange 2007 databases. The
 Status switch retrieves extra information about the databases. By default the cmdlet does not show
information about the Mounted status, BackupInProgress , and OnlineMaintenanceInProgress .
Including the Status switch takes extra processing, so scoping the storage group may speed up the
results.

 This example retrieves the Mounted status for every database in the organization:

Get-MailboxDatabase -Status | ft Name, StorageGroup, Mounted

 Removing Databases
 The Remove-MailboxDatabase cmdlet removes the database object, but does not remove the actual
files. Before the cmdlet can be called, all users must be moved to another database or deleted.

Remove-MailboxDatabase -Identity < DatabaseIdParameter >
[-DomainController < Fqdn >] [< CommonParameters >]
An example follows:Remove-MailboxDatabase -Identity “mb100\First Storage
Group\mailbox database”

 Managing Mailboxes
 While most mailbox management is done with the Exchange Management Console, the ability to
perform bulk operations or make scripts to automate mailbox activities is easy with PowerShell.

 Cmdlets discussed in this section are:

❑ Remove-Mailbox

❑ Disable-Mailbox

❑ Get-MailboxStatistics

c08.indd 222c08.indd 222 12/17/07 5:28:39 PM12/17/07 5:28:39 PM

Chapter 8: Confi guring the Mailbox Server Role

223

❑ Set-MailboxDatabase

❑ Clean-MailboxDatabase

❑ Connect-Mailbox

 One common surprise for first time administrators using the management console is discovering that
the AD user object is deleted when they try to just remove the Exchange mailbox. This is because the
Remove action deletes both the mailbox and the AD object. To correctly remove an Exchange mailbox,
use the Disable action. Figure 8 - 2 shows this with PowerShell.

Figure 8-2

 To remove both the AD account and the Exchange account, use the Remove-Mailbox cmdlet:

Remove-Mailbox -Identity < MailboxIdParameter > [-DomainController < Fqdn >]
[-Permanent < $true | $false >] [< CommonParameters >]

Remove-Mailbox -Database < DatabaseIdParameter > -StoreMailboxIdentity
< Store MailboxIdParameter > [-DomainController < Fqdn >] [< CommonParameters >]

 To remove just the Exchange mailbox and not delete the AD account, use the Disable-Mailbox cmdlet:

Disable-Mailbox -Identity < MailboxIdParameter > [-DomainController < Fqdn >]
[< CommonParameters >]

 When a mailbox is deleted, it is not really gone; it becomes tombstoned, creating a disconnected mailbox.
This allows for recovery from accidental deletions without having to restore from backup. The default
setting for the mailbox recovery tombstone period is 30 days. However, if the Permanent parameter is
set to true in the Remove-Mailbox cmdlet, the mailbox will not tombstone and will not be recoverable
without going to backup media.

c08.indd 223c08.indd 223 12/17/07 5:28:39 PM12/17/07 5:28:39 PM

Part II: Working with Server Roles

224

 To find all disconnected mailboxes, type the following expression:

Get-MailboxStatistics [-Database < DatabaseIDParameter >] | where {$_.DisconnectDate
-ne $null}

 The next example retrieves all of the disconnected mailboxes from the mailbox database. Just omit the
database parameter to see all disconnected mailboxes in the organization.

Get-MailboxStatistics -Database “mb100\mailbox database” | where {$_.DisconnectDate
-ne $null}

 To change the default 30 - day tombstone period, use the Set-MailboxDatabase cmdlet to set the
MailboxRetention parameter. Changing this value may impact mailbox storage requirements. The
value of MailboxRetention is the number of days, hours, minutes, and seconds the mailboxes will be
tombstoned.

 The following cmdlet sets the test environment to tombstone for 15 days:

Set-MailboxDatabase -Identity “mb100\mailbox database” -MailboxRetention
15.00:00:00

 Under most circumstances it is not necessary to run Clean-MailboxDatabase . Typically, when a mail-
box is removed or disabled, it is marked as disconnected. If a mailbox was removed while the database
was offline, it may not show up as disconnected right away. It is possible to force this process with the
 Clean-MailboxDatabase cmdlet. This is the same process as the Clean - up Agent in Exchange 2003.

Clean-MailboxDatabase -Identity < DatabaseIdParameter > [-DomainController
 < Fqdn >]
Following is an examp le: Clean-MailboxDatabase -Identity “mb100\mailbox database”

 Another option for a disconnected mailbox is to connect it to a new Active Directory user object. An
administrator may need to do this if she accidentally deletes a mailbox, or a manager needs access to a
former employee ’ s mailbox. Once connected, the target user account has full access and rights to the
mailbox. The Connect-Mailbox cmdlet has a number of combinations depending on which parameters
are used:

Connect-Mailbox -Identity < StoreMailboxIdParameter > -Database
 < DatabaseIdParameter > [-ActiveSyncMailboxPolicy
 < MailboxPolicyIdParameter >] [-Alias < String >] [-DomainController < Fqdn >]
[-ManagedFolderMailboxPolicy < MailboxPolicyIdParameter >]
[-ManagedFolderMailboxPolicyAllowed < SwitchParameter >] [-User
 < UserIdParameter >]

Connect-Mailbox -Identity < StoreMailboxIdParameter > -Database
 < DatabaseIdParameter > -ValidateOnly < SwitchParameter > [-DomainController
 < Fqdn >]

Connect-Mailbox -Identity < StoreMailboxIdParameter > -Database
 < DatabaseIdParameter > -Shared < SwitchParameter > [-ActiveSyncMailboxPolicy
 < MailboxPolicyIdParameter >] [-Alias < String >] [-DomainController < Fqdn >]

c08.indd 224c08.indd 224 12/17/07 5:28:40 PM12/17/07 5:28:40 PM

Chapter 8: Confi guring the Mailbox Server Role

225

[-ManagedFolderMailboxPolicy < MailboxPolicyIdParameter >]
[-ManagedFolderMailboxPolicyAllowed < SwitchParameter >] [-User
 < UserIdParameter >]

Connect-Mailbox -Identity < StoreMailboxIdParameter > -Database
 < DatabaseIdParameter > -Equipment < SwitchParameter >
[-ActiveSyncMailboxPolicy < MailboxPolicyIdParameter >] [-Alias < String >]
[-DomainController < Fqdn >] [-ManagedFolderMailboxPolicy
 < MailboxPolicyIdParameter >] [-ManagedFolderMailboxPolicyAllowed
 < SwitchParameter >] [-User < UserIdParameter >]

Connect-Mailbox -Identity < StoreMailboxIdParameter > -Database
 < DatabaseIdParameter > -LinkedDomainController < Fqdn > -LinkedMasterAccount
 < UserIdParameter > [-ActiveSyncMailboxPolicy < MailboxPolicyIdParameter >]
[-Alias < String >] [-DomainController < Fqdn >] [-LinkedCredential
 < PSCredential >] [-ManagedFolderMailboxPolicy < MailboxPolicyIdParameter >]
[-ManagedFolderMailboxPolicyAllowed < SwitchParameter >] [-User
 < UserIdParameter >]

Connect-Mailbox -Identity < StoreMailboxIdParameter > -Database
 < DatabaseIdParameter > -Room < SwitchParameter > [-ActiveSyncMailboxPolicy
 < MailboxPolicyIdParameter >] [-Alias < String >] [-DomainController < Fqdn >]
[-ManagedFolderMailboxPolicy < MailboxPolicyIdParameter >]
[-ManagedFolderMailboxPolicyAllowed < SwitchParameter >] [-User
 < UserIdParameter >]

Connect-Mailbox -Identity < StoreMailboxIdParameter > -Database
 < DatabaseIdParameter > [-DomainController < Fqdn >]

 If no User parameter is supplied, the cmdlet tries to match off of the legacyExchangeDN and the
 DisplayName . The ValidateOnly switch parameter simulates the mailbox connection only. Using
 ValidateOnly is a good way to see which account will be associated without committing the action.

 Recovery Storage Groups
 The recovery storage group (RSG) is a feature used for recovering mailbox data from a special database.
The RSG differs from user and public folder storage groups. It is not possible to use any clients, such as
Outlook or Outlook Web Access, to access the mounted database. RSGs can be used to recover mailbox
data, or as part of recovery from a dial - tone recovery strategy. To use the Exchange Management Console
to create an RSG, select the Database Recovery Management tool in the toolbox.

 Creating an RSG can be broken down into the following steps:

 1. Create an RSG storage group.

 2. Create a recovery database linked to an existing database.

 3. Set the recovery database to allow overwrite.

 4. Restore the database.

 5. Mount the database.

 6. Restore mailbox data.

c08.indd 225c08.indd 225 12/17/07 5:28:40 PM12/17/07 5:28:40 PM

Part II: Working with Server Roles

226

 The following are cmdlets discussed in this section:

❑ New-StorageGroup

❑ Get-StorageGroup

❑ New-MailboxDatabase

❑ Set-MailboxDatabase

❑ Mount-Database

❑ Restore-Mailbox

❑ Get-MailboxStatistics

❑ Remove-Database

 Create the RSG
 The first step is to create the RSG. This task is similar to creating the regular storage group from earlier in
this chapter. The inclusion of the recovery parameter is what makes it different from a regular storage group.

New-StorageGroup -Server mb100 -LogFolderPath c:\rsg -name RSG -SystemFolderPath
c:\rsg -Recovery

 The Get-StorageGroup shows how the newly created storage group is marked for recovery.
(See Figure 8 - 3 .)

Figure 8-3

c08.indd 226c08.indd 226 12/17/07 5:28:40 PM12/17/07 5:28:40 PM

Chapter 8: Confi guring the Mailbox Server Role

227

 Create the RSG Database
 Next, create the recovery database with New-MailboxDatabase . The MailboxDatabaseToRecover
parameter is what links the RSG to the target database. Figure 8 - 4 shows the results of the following
cmdlet that creates a new RSG:

New-MailboxDatabase -MailboxDatabaseToRecover “Mailbox Database” -StorageGroup
mb100\rsg -EdbFilePath c:\rsg\rsg.edb

 < rsg new db.tif >

Figure 8-4

 If needed, mark the mailbox database to allow overwrites. Setting this value to true allows a database
that does not match the information in Active Directory to mount. Forcing administrators to explicitly set
the database overwrite flag prevents accidentally mounting an incorrect database.

Set-MailboxDatabase -Identity “mb100\RSG\mailbox database” -AllowFileRestore:$true

 Restore the Database
 Restore the database file from tape or disk. Selecting the Last Restore Set checkbox means that after the
file restore, Exchange will perform a hard recovery. Figure 8 - 5 illustrates the database restore options
when using the System Backup utility. Exchange automatically redirects any restores to the RSG instead
of the original location.

c08.indd 227c08.indd 227 12/17/07 5:28:41 PM12/17/07 5:28:41 PM

Part II: Working with Server Roles

228

 Mount the Database
 The last step before being able to export mail is to mount the database:

Mount-Database -Identity “mb100\RSG\mailbox database”

 Restore Mail
 There are several methods to restore mail to users with the restore-Mailbox cmdlet:

Restore-Mailbox -Identity < MailboxIdParameter > -RSGDatabase
 < DatabaseIdParameter > [-AllContentKeywords < String[] >]
[-AttachmentFilenames < String[] >] [-BadItemLimit < Int32 >]
[-ContentKeywords < String[] >] [-EndDate < DateTime >] [-ExcludeFolders
 < MapiFolderPath[] >] [-GlobalCatalog < Fqdn >] [-IncludeFolders
 < MapiFolderPath[] >] [-Locale < CultureInfo >] [-MaxThreads < Int32 >]
[-ReportFile < LocalLongFullPath >] [-StartDate < DateTime >]
[-SubjectKeywords < String[] >] [-ValidateOnly < SwitchParameter >]

Restore-Mailbox -Identity < MailboxIdParameter > -RSGDatabase
 < DatabaseIdParameter > -RSGMailbox < StoreMailboxIdParameter > -TargetFolder
 < String > [-AllContentKeywords < String[] >] [-AttachmentFilenames
 < String[] >] [-BadItemLimit < Int32 >] [-ContentKeywords < String[] >]
[-EndDate < DateTime >] [-ExcludeFolders < MapiFolderPath[] >] [-GlobalCatalog
 < Fqdn >] [-IncludeFolders < MapiFolderPath[] >] [-Locale < CultureInfo >]
[-MaxThreads < Int32 >] [-ReportFile < LocalLongFullPath >] [-StartDate
 < DateTime >] [-SubjectKeywords < String[] >] [-ValidateOnly
 < SwitchParameter >]

Figure 8-5

c08.indd 228c08.indd 228 12/17/07 5:28:41 PM12/17/07 5:28:41 PM

Chapter 8: Confi guring the Mailbox Server Role

229

 To recover a single mailbox and restore mail to the original location, specify the identity of a user mail-
box as the target. The restore matches the target mailbox ’ s GUID to the mailbox in the recovery storage
group. For example, to restore Jeffrey ’ s mailbox, enter the following:

Restore-Mailbox -Identity Jeffrey -RSGDatabase “MB100\rsg\mailbox database”

 The output from the Restore-Mailbox cmdlet will look like Figure 8 - 6 .

Figure 8-6

c08.indd 229c08.indd 229 12/17/07 5:28:41 PM12/17/07 5:28:41 PM

Part II: Working with Server Roles

230

 The following recovers all mailboxes in the RSG to the live database:

Get-MailboxStatistics -Database “RSG\mailbox database” | Restore-Maibox -
RSGDatabase “RSG\mailbox database”

 It is possible to restore the contents of one mailbox into another user ’ s folders. In Exchange Server 2007
RTM (Release to Manufacturing, or the initial release), it is only possible to export to an Exchange mail-
box. However Service Pack 1 adds the ability to be able to export mailbox data to an Outlook data file
(PST file),

 This example shows restoring Jeffrey ’ s mailbox into the administrator ’ s mailbox. TargetFolder needs
to be supplied and it will automatically append \Recovered Data - mailbox name as a subfolder.

Restore-Mailbox -RSGMailbox “jeffrey rosen” -RSGDatabase “RSG\mailbox database” -
Identity “Administrator” -TargetFolder “restores”

 Figure 8 - 7 shows the output from running the Restore-Mailbox cmdlet. The cmdlet outputs a lot of
information letting the administrator see exactly what parameters were used during the restore.

Figure 8-7

c08.indd 230c08.indd 230 12/17/07 5:28:42 PM12/17/07 5:28:42 PM

Chapter 8: Confi guring the Mailbox Server Role

231

 There are a number of parameters for filtering content. Examples are keywords, date ranges, and specific
folders. The next example shows exporting only Microsoft Word documents from Jeffrey ’ s mailbox
between March 3rd and July 1st:

Restore-Mailbox -Identity Jeffrey - RSGDatabase “mb100\rsg\mailbox database”
-StartDate ‘03/03/07’ -EndDate ‘07/01/07’-AttachmentFilenames “*.docx”

 After all the data has been restored the following procedure removes the RSG:

 Remove-Database -Identity “mb100\rsg\mailbox database”
Remove-StorageGroup -Identity “mb100\rsg”

 The cmdlet warns that any files, such as the database (.edb) and log files, must be manually removed, as
shown in Figure 8 - 8 .

Figure 8-8

 Public Folders
 Public folders are special databases where users can share information. Also, various system folders
store information in public folders. Public folders are explained in more detail in Chapter 5 , so this sec-
tion only briefly touches upon the subject.

c08.indd 231c08.indd 231 12/17/07 5:28:42 PM12/17/07 5:28:42 PM

Part II: Working with Server Roles

232

 The cmdlet used in this section is:

❑ New-PublicFolderDatabase

 A mailbox server can have multiple storage groups and databases, but only one Public folder store per
mailbox server. Instead of using the New-MailboxDatabase cmdlet, to create a Public folder database
use the New-PublicFolderDatabase cmdlet:

New-PublicFolderDatabase -Name < String > -StorageGroup
 < StorageGroupIdParameter > [-CopyEdbFilePath < EdbFilePath >]
[-DomainController < Fqdn >] [-EdbFilePath < EdbFilePath >] [-HasLocalCopy
 < $true | $false >] [-TemplateInstance < PSObject >] [< CommonParameters >]

 Following is an example:

New-PublicFolderDatabase -Name “Public Folder DB” -StorageGroup “mb100\Public
Folder Storage Group”

 The output in Figure 8 - 9 shows the error if creating multiple Public folder stores on a server is attempted.

Figure 8-9

c08.indd 232c08.indd 232 12/17/07 5:28:42 PM12/17/07 5:28:42 PM

Chapter 8: Confi guring the Mailbox Server Role

233

 Summary
 The mailbox server is the heart of Exchange. User and mailbox management is probably where adminis-
trators will spend most of their time. This chapter covered storage group and database installation and
configuration. The next topic covered in detail was user quotas. This demonstrated PowerShell ’ s built - in
conversion capabilities. Another point to remember is the status parameter, which gives extra informa-
tion about a mailbox database. Without it, key information such as if a database is mounted would be
left out. A very common mistake is the first time administrators use the GUI console to delete a mailbox
and they end up deleting the Active Directory account. The same confusion can happen in PowerShell if
the administrator uses Remove-Mailbox instead of Disable-Mailbox .

 Next, the chapter showed how to configure various mailbox availability features, such as deleted item
retention, mailbox recover, and Recovery Storage Groups. Recovery Storage Groups is a powerful fea-
ture that is used for a number of reasons. It is used as part of a dial - tone recovery strategy, a way to do
 “ compliance ” searches across mailboxes, or simply a way to recover lost data.

 Lastly, the chapter showed how to create a new public folders database. Working with public folders is
explained thoroughly in Chapter 5 .

c08.indd 233c08.indd 233 12/17/07 5:28:43 PM12/17/07 5:28:43 PM

c08.indd 234c08.indd 234 12/17/07 5:28:43 PM12/17/07 5:28:43 PM

 Configuring the Edge
Transport Server Role

 Chapter 7 discussed the transport architecture in Exchange Server 2007 and Hub Transport
server role. This chapter discusses the Edge Transport server role, which is identical to the
Hub server role in many respects and implements the core transport architecture. Although both
roles share identical features, they differ in default configuration and functionality. Whereas the
focus of the Hub Transport server role is intra - organizational email communication and
compliance, the focus of the Edge Transport server is for inter - organizational email communication,
message hygiene, and security. This implementation of the Edge Transport server new to the
Exchange line of messaging products arose as a result of increasing Unsolicited Commercial E - mail
(UCE) volume and the risk of denial of service attacks perpetrated via email. It reduces the attack
surface of such threats by providing a means for organizations to segment such email traffic even
before it enters the Exchange organization, while preventing access to internal resources. Some of
the features of the Edge Transport server have been implemented in earlier versions of Exchange,
however this role segmentation was never possible in any other version of Exchange. Message
filtering functionality such as sender, Recipient, connection filtering, and so forth, which existed in
Exchange Server 2003, have been improved and implemented on the Edge Transport server role.

 By the end of this chapter, you ’ ll have an overview of the components of the Edge Transport server
and be able to configure the Edge Transport server for email message flow into and out of an
Exchange organization, using the Exchange Management Shell. You will also gain an idea of how
agents work in message hygiene.

 This chapter covers the following:

❑ A brief overview of the Edge Transport server role and its architecture

❑ The Active Directory Application Mode (ADAM) service requirement for the Edge
Transport server role

❑ Configuration of the Edge Transport server

❑ Message hygiene and transport agents

c09.indd 235c09.indd 235 12/17/07 5:29:20 PM12/17/07 5:29:20 PM

Part II: Working with Server Roles

236

 The following is a list of Edge - related cmdlets that could be used to view and configure the Edge
Transport server role in Exchange Server 2007. Some are discussed later in more detail.

❑ Get-EdgeSubscription

❑ New-EdgeSubscription

❑ Remove-EdgeSubscription

❑ Start-EdgeSynchronization

❑ Test-EdgeSynchronization

❑ Get-AcceptedDomain

❑ Set-AcceptedDomain

❑ New-AcceptedDomain

❑ Remove-AcceptedDomain

❑ Get-RemoteDomain

❑ Set-RemoteDomain

❑ New-RemoteDomain

❑ Remove-RemoteDomain

❑ Get-AdSite

❑ Get-SendConnector

❑ Set-SendConnector

❑ New-SendConnector

❑ Remove-SendConnector

❑ Get-ReceiveConnector

❑ Set-ReceiveConnector

❑ New-ReceiveConnector

❑ Remove-ReceiveConnector

❑ Disable-TransportAgent

❑ Enable-TransportAgent

❑ Get-TransportAgent

❑ Set-TransportAgent

❑ Uninstall-TransportAgent

c09.indd 236c09.indd 236 12/17/07 5:29:22 PM12/17/07 5:29:22 PM

Chapter 9: Confi guring the Edge Transport Server Role

237

 Overview of the Edge Transport
Server Role

 The actual focus of this role is relaying inbound and outbound messages to and from an Exchange
organization while providing message hygiene and security. It is essentially an SMTP relay server.
Unlike the Hub Transport server role, the Edge Transport server role does not require direct access to
Active Directory. It is installed in a perimeter network on either a Windows member server or
workstation with no domain membership. Information required by the Edge Transport server to perform
its functions is provided in the Active Directory Application Mode (ADAM) directory service. It is
important to note that this is a one - way replication of information and not all data in Active Directory is
synchronized with the ADAM directory. Only Recipient, configuration, and topology information
required by the Edge server to perform its functions of message relay, message hygiene, anti - spam, and
the application of transport rules are replicated to ADAM. How, then, is this information kept up to
date? The MSExchangeEdgeSync service, which runs only on the Hub Transport server, pushes updates
and changes from Active Directory to ADAM on a scheduled basis.

 For communication with Hub Transport servers within the Exchange organization and synchronization
of updates, it is recommended that the Edge Transport server be subscribed to an Active Directory site in
the Exchange Server organization. Edge subscription provides secure replication of information from
Active Directory to ADAM and simplifies the configuration of the Edge Transport server to relay
messages into and out of the Exchange organization. It also simplifies the configuration made on the
Hub Transport servers such that they know to route outbound Internet mail to the Edge Transport server
for Internet delivery. The edge subscription process also enables Recipient lookups and anti - spam
features.

 The Edge Transport server accepts incoming mail from the Internet and routes outbound mail to the
Internet based on DNS resolution of Mail Exchanger (MX) records of Internet domains or it can be
configured to forward mails to another smart host, such as an ISP or a message compliance system. Send
and Receive Connectors are also configured on the Edge Transport server to control how a message is
routed. The Edge Transport server also provides a message address rewrite agent. When companies
merge and want to present a single email address for all outgoing emails irrespective of the internal
company, address rewrite becomes invaluable.

 Message hygiene is achieved by providing different layers of spam filtering and implementation of
anti - spam and anti - virus agents, thus blocking viruses and spam at the network perimeter. In addition,
transport rules act on messages that meet certain configured criteria, spam confidence level (SCL)
ratings, or have certain message contents and reject or quarantine these messages as configured.

 The Edge Transport server ’ s architecture is identical to that of the Hub Transport server. Both implement
the core transport components mentioned in Chapter 7 . The key differences are in message
categorization and implementation of transport agents. By default the number of agents configured on
the Edge Transport server is more than those configured on the Hub Transport server. Agents are
discussed later in this chapter.

c09.indd 237c09.indd 237 12/17/07 5:29:23 PM12/17/07 5:29:23 PM

Part II: Working with Server Roles

238

 Message Categorization
 As noted in Chapter 7 , the Categorizer on the Hub Transport server is notified about messages in the
Submission queue and begins message categorization. It resolves Recipients, expands distribution lists,
applies any Recipient restriction configured, and performs routing based on the Recipients. On the Edge
Transport server, however, no Recipient resolution or distribution list expansion occurs. The domain
portion of the message Recipient is used to determine how the message is routed. There are only two
routing options or next hops for each message. Either a message is routed based on DNS resolution of
the Recipient domain or the message is forwarded to a smart host. In addition, content conversion of the
message is bypassed on the Edge Transport server.

 Active Directory Application Mode
 Active Directory Application Mode (ADAM) is a stand - alone directory service that provides Lightweight
Directory Access Protocol (LDAP) connectivity to a directory database and can be used by directory -
 enabled applications. It is stand - alone in the sense that it does not depend on the existence of an Active
Directory domain or forest to provide its service. It is a repository for application - related information,
which it replicates with the Active Directory. ADAM provides an LDAP service and an Extensible
Storage Engine (ESE) database for accessing and storing configuration, Recipient, and topology
information required by the Edge Transport server role.

 The ADAM database is an ESE database called adamntds.dit stored in the \Exchange Server\
TransportRoles\data\Adam directory.

 You are required to install ADAM prior to installing the Edge Transport server role. When the Edge
Transport server role is installed, an ADAM instance called MSexchangeAdam is started. When the
service starts it opens ports for LDAP and Secure LDAP connections. These ports are set to 50389
and 50636, respectively. The ADAM service implemented by the Edge Transport server role
is ADAM_MSExchange , its process name is Dsamain , and it has the service dependencies shown
in Figure 9 - 1 .

Figure 9-1

c09.indd 238c09.indd 238 12/17/07 5:29:23 PM12/17/07 5:29:23 PM

Chapter 9: Confi guring the Edge Transport Server Role

239

 Edge Subscription and Synchronization
 As noted earlier, the Edge Transport server resides in a perimeter network and uses the ADAM directory
service. However, to function optimally, this directory must be updated with certain information from
Active Directory within the Exchange organization. Hence, edge subscriptions are used to securely
populate a subset of data from Active Directory into ADAM. Edge synchronization, which is initiated
by the EdgeSync service that runs on the Hub Transport server, ensures that changes are replicated to
ADAM at configured intervals.

 An Edge Transport server is subscribed to an Active Directory site; this enables the Edge Transport
server to receive updates to ADAM from Active Directory. A partnership is created based on exchanged
credentials between the Edge Transport server and all the Hub Transport servers in the Active Directory
site. An implicit Send Connector is created, which enables Hub Transport servers in the Exchange
organization to relay messages to the Edge Transport server for delivery to the Internet without you
having to configure explicit Send Connectors.

 The process of edge subscription starts when you run the New-EdgeSubscription cmdlet on the
Edge Transport server. This creates a public - private key pair as well as ADAM bootstrap credentials
that are used for communication between the Edge Transport server and Hub Transport server to
synchronize data. Next you run the same cmdlet on a Hub Transport server in the Active Directory
site and specify the site the Edge Transport server will be subscribed to. After subscription on both
servers, the EdgeSync process running on the Hub Transport server generates a new set of credentials
for the Hub Transport servers and replicates this information to the Edge Transport server, discarding
the bootstrap credential. Thereafter EdgeSync continues to run periodically, pushing changes made in
Active Directory to ADAM.

 The type of data replicated includes Send Connector configuration, accepted domains, remote domains,
message classifications, safe senders lists, Recipients, Transport Layer Security (TLS) send and receive
domain secure lists, an internal SMTP servers list, and the list of Hub Transport servers subscribed to the
Active Directory site. Most of the data replicated, such as the Recipient information, is translated, hence
if the Edge Transport server and ADAM are compromised, no Recipient information is exposed. Various
types of data are replicated at different intervals. Configuration data is replicated every hour, Recipient
data is replicated every 4 hours, and topology information is replicated every 5 minutes.

 If edge subscription and EdgeSync are not configured, you cannot use the Recipient lookup feature or
safelist aggregation.

 After the edge subscription process completes, all the Hub Transport servers that are installed in that
Active Directory site at that time can participate in the EdgeSync process. What happens if one of these
Hub Transport servers is removed or if a new Hub Transport server is added to the site? If a Hub
Transport server is removed, all the other Hub Transport servers continue to participate in the EdgeSync
process. If a new server is added, it isn ’ t automatically able to participate in the EdgeSync process. The
edge subscription must be removed from the Edge Transport server or servers and the associated Active
Directory site. It must then be re - subscribed to enable new Hub Transport server to participate in the
EdgeSync process.

c09.indd 239c09.indd 239 12/17/07 5:29:23 PM12/17/07 5:29:23 PM

Part II: Working with Server Roles

240

 Features Introduced in Exchange Server 2007 SP 1
 Exchange Server 2007 Service Pack 1 (SP1) supports deployment of server roles on a Windows Server
2008 computer. If the Edge Transport server is installed on Windows Server 2008, ADAM is replaced by
Active Directory Lightweight Directory Services (AD LDS).

 Exchange Server 2007 Service Pack 1 (SP1) introduces a new parameter for the
 Test-EdgeSynchronization cmdlet called VerifyRecipient . This cmdlet and parameter
can be run only on a Hub Transport server to verify the EdgeSync synchronization status for a
single Recipient to determine whether the Recipient is synchronized. It returns results as shown
in Figure 9 - 2 .

Figure 9-2

 Exchange Server 2007 introduced cloned configuration for the Edge Transport server to enable
administrators installing multiple Edge Transport servers to deploy a consistent configuration across
their servers. In addition, they could restore the Edge Transport servers from a cloned configuration if
needed due to a server failure. In the Release To Manufacturing (RTM) version, however, the cloned
configuration did not include the TransportConfig object. Hence, after cloning a target Edge Transport
server, the transport configuration attributes on the target server are different than those on the original
Edge Transport server. In Exchange Server 2007 SP1, the information that is cloned now includes the
 TransportConfig object. The TransportConfig object controls server - wide settings for the Edge
Transport server role. This information is written to the intermediate XML file. This way, the transport

c09.indd 240c09.indd 240 12/17/07 5:29:24 PM12/17/07 5:29:24 PM

Chapter 9: Confi guring the Edge Transport Server Role

241

configuration setting is identical on the target Edge Transport server. The following cmdlets include
some new parameters:

❑ Start-EdgeSynchronization : This cmdlet now has a new server parameter. This allows an
administrator to start edge synchronization from a remote computer by simply specifying the
Hub Transport server edge synchronization will be run against.

❑ Update-SafeList : This cmdlet also now has a new includeddomains parameter . One of the
responsibilities of EdgeSync is to replicate safelist aggregation data to the Edge Transport server
role. This safelist is based upon data stored on Outlook user or Outlook Web Access user
mailboxes. This safelist causes the Content Filter agent (discussed later in this chapter) to bypass
content filtering for users specified in the safelist. In Exchange Server 2007 SP1, you can now use
the includeddomains parameter to add domains to the safelist. This parameter should be used
with caution because adding a domain may inadvertently provide addresses that could be
used to spoof emails by spammers.

 Edge Transport Server Configuration
 Several steps are required to ensure that the Edge Transport server works efficiently to provide message
hygiene and route mail into and out of an Exchange organization. As mentioned earlier, the Edge
Transport server cannot be installed if the ADAM service is not installed. You will be prompted to install
ADAM during the prerequisite checks.

 This section covers the following list of Edge - related cmdlets:

❑ Get-EdgeSubscription

❑ New-EdgeSubscription

❑ Remove-EdgeSubscription

❑ Start-EdgeSynchronization

❑ Test-EdgeSynchronization

❑ Get-AcceptedDomain

❑ Set-AcceptedDomain

❑ New-AcceptedDomain

❑ Remove-AcceptedDomain

❑ Get-RemoteDomain

❑ Set-RemoteDomain

❑ New-RemoteDomain

❑ Remove-RemoteDomain

c09.indd 241c09.indd 241 12/17/07 5:29:24 PM12/17/07 5:29:24 PM

Part II: Working with Server Roles

242

❑ Get-AdSite

❑ Get-SendConnector

❑ Set-SendConnector

❑ New-SendConnector

❑ Remove-SendConnector

❑ Get-ReceiveConnector

❑ Set-ReceiveConnector

❑ New-ReceiveConnector

 New - EdgeSubscription
 This cmdlet is used to export an edge subscription file from an Edge Transport server and to import the
edge subscription file to a Hub Transport server in an Active Directory site.

 For a detailed list run the following in the Exchange Management Shell: Get-Help
New-EdgeSubscription -detailed. The syntax for this cmdlet has the following parameters:

New-EdgeSubscription -FileName < LongPath > [-Confirm [< SwitchParameter >]]
[-CreateInboundSendConnector < $true | $false >] [-CreateInternetSendConnector < $true |
$false >] [-DomainController < Fqdn >] [-Force < SwitchParameter >] [-Site
 < AdSiteIdParameter >] [-WhatIf [< SwitchParameter >]] [< CommonParameters >]

 Some key parameters to note include:

❑ FileName < LongPath > : This is the only required parameter when exporting the subscription
file from the Edge Transport server. You must specify the full path to the file as well as the
extension.

❑ CreateInboundSendConnector < $true | $false > : This parameter when set to $ false will
not create the Send Connector from the Edge Transport server to the Hub Transport servers. The
default value is $True . The Send Connector address space will be set to -- , the smart hosts will
be set to -- , the Edge Transport server will be set as the source server, and Domain Name
System (DNS) routing will be disabled. This parameter is only used when you run the command
on the Hub Transport server.

❑ CreateInternetSendConnector < $true | $false > : This parameter is only used when run
on the Hub Transport server. When set to false it will not create the Send Connector to the
Internet. The default value is $true . The Send Connector address space will be set to all
domains (*) , the Edge Transport server will be set as the source server, and DNS routing will
be enabled.

❑ DomainController < Fqdn > : Use the DomainController parameter to specify the host
name or fully qualified domain name (FQDN) of the domain controller that will process this
command. This parameter is used only when you run the command on a Hub Transport server.

c09.indd 242c09.indd 242 12/17/07 5:29:24 PM12/17/07 5:29:24 PM

Chapter 9: Confi guring the Edge Transport Server Role

243

❑ Force < SwitchParameter > : Use the Force parameter to bypass the confirmation prompt
when you run the New-EdgeSubscription command on an Edge Transport server. This
parameter also causes the command to overwrite an existing edge subscription file with the
same name as the file you are creating. This parameter is useful when you script the Edge
Subscription command and when you re - subscribe an Edge Transport server.

❑ Site < AdSiteIdParameter > : This parameter is used to specify the name of the Active
Directory site that contains the Hub Transport servers with which the Edge Transport servers
will be associated. Only used when run on a Hub Transport server and it is a required parameter
when the command is run on a Hub Transport server.

 Remove - EdgeSubscription
 This cmdlet is used to export an edge subscription file from an Edge Transport server and to import the
edge subscription file to a Hub Transport server in an Active Directory site.

 For a detailed list run the following in the Exchange Management Shell: Get-Help
Remove-EdgeSubscription -detailed . The syntax for this cmdlet has the following parameters:

Remove-EdgeSubscription -Identity < TransportServerIdParameter > [-Confirm
[< SwitchParameter >]]
[-DomainController < Fqdn >] [-WhatIf [< SwitchParameter >]]

❑ Identity < TransportServerIdParameter > : This parameter specifies the identity of the Edge
Transport server for which you want to remove the edge subscription. The identity is expressed
as the host name of the Edge Transport server.

❑ Confirm < SwitchParameter > : The Confirm parameter causes the command to pause
processing and requires the administrator to acknowledge what the command will do
before processing continues. The default value is $true .

❑ DomainController < Fqdn > : Use the DomainController parameter to specify the host name
or fully qualified domain name (FQDN) of the domain controller that will write this change to
Active Directory. This parameter is used only when the procedure is run on the Hub Transport
server.

 Start - EdgeSynchronization
 This cmdlet is used to start the synchronization of configuration data to the Edge Transport server after it
is subscribed to the Exchange organization.

 For a detailed list run the following in the Exchange Management Shell: Get-Help
Start-EdgeSynchronization -detailed . The syntax for this cmdlet has the following parameters:

Start-EdgeSynchronization [-Confirm [< SwitchParameter >]] [-Server
 < ServerIdParameter >] [-WhatIf
[< SwitchParameter >]]

c09.indd 243c09.indd 243 12/17/07 5:29:25 PM12/17/07 5:29:25 PM

Part II: Working with Server Roles

244

 Test - EdgeSynchronization
 This cmdlet is used to determine the status of subscribed Edge Transport servers. It includes a new
parameter VerifyRecipient, which was introduced in Exchange Server 2007 SP1, used to test the
synchronization status of a specific Recipient.

 For a detailed list run the following in the Exchange Management Shell: Get-Help
Test-EdgeSynchronization -detailed . The syntax for this cmdlet has the following parameters:

Test-EdgeSynchronization [-Confirm [< SwitchParameter >]] [-DomainController < Fqdn >]
[-ExcludeRecipientTest < SwitchParameter >] [-MaxReportSize < Unlimited >]
[-MonitoringContext < $true | $false >] [-WhatIf [< SwitchParameter >]]

Test-EdgeSynchronization -VerifyRecipient < ProxyAddress > [-Confirm
[< SwitchParameter >]] [-DomainController < Fqdn >] [-WhatIf [< SwitchParameter >]]

❑ ExcludeRecipientTest < SwitchParameter > : This parameter excludes validation of
Recipient data synchronization. When specified only the synchronization of configuration
objects will be validated.

❑ VerifyRecipient : This parameter is used to verify the synchronization status of a single
Recipient. You identify the Recipient by specifying a proxy address that is assigned to the
Recipient. The proxy address is the Recipient ’ s email address. The Recipient verification test is
mutually exclusive of the test that verifies synchronization of configuration data.

❑ MaxReportSize < Unlimited > : This parameter when used specifies the total number of objects
and properties that will be listed in the results. Results include both objects in - sync and
out - of - sync.

❑ MonitoringContext < $true | $false > : This parameter is used only when MOM is being
used for server monitoring. When set to $true , it populates the monitoring context with events
and performance counters used by MOM. By default this parameter is set to $false .

 Although the discussion in this section covers the configuration of the Edge Transport server in an
Exchange Server 2007 environment, it is worth mentioning that the Edge Transport server can also be
deployed in the perimeter network of an existing Exchange Server 2000/2003 environment. It does
not require the upgrade of Exchange Server 2000/2003 servers or Active Directory forest or domain
preparation to deploy the Edge Transport server in this environment because the Edge Transport server
is dependent on ADAM. With appropriate configuration of Send and Receive Connectors, DNS
configuration, accepted domains, and SMTP Connectors, the Edge Transport server can be used as a
smart host for the Exchange 2000/2003 messaging environment. However, to take advantage of all the
anti - spam and anti - virus features of the Edge Transport server, the Edge Transport server should be
subscribed to the Exchange organization. To achieve this in an existing Exchange 2000/2003
environment, at least one Exchange Server 2007 Hub Transport server role should deployed into
the existing Exchange organization to complete the edge subscription process.

 The Edge Transport servers in the perimeter network and the Hub Transport servers in the Exchange
organization must be able to locate each other by using host name resolution. You must specify the
appropriate DNS suffix for the Edge Transport server prior to its installation.

c09.indd 244c09.indd 244 12/17/07 5:29:25 PM12/17/07 5:29:25 PM

Chapter 9: Confi guring the Edge Transport Server Role

245

 Preparing the Edge Transport Server
 After you install the Microsoft Exchange Server 2007 Edge Transport server role, if you do not use
edge subscription and EdgeSync to automate your configuration, then you must configure the Send
and Receive Connectors. For complete mail flow, the Edge Transport server must have connectors that
support mail flow to and from the Internet, and to and from the organization. The actual steps to prepare
the Edge Transport server will vary depending on whether edge subscription and EdgeSync will be
performed. It is highly recommended that you use edge subscription and EdgeSync to subscribe the
Edge Transport server to an Active Directory site in the Exchange organization because this automates
and simplifies the configuration on the Edge Transport servers.

 In this section, you examine both scenarios for configuring the Edge Transport server to function with an
Exchange Server 2007 organization: first, where no edge subscription and EdgeSync is implemented and
second, where edge subscription and EdgeSync is performed. The tasks that must be completed on the
Edge Transport server based on these scenarios are discussed.

 The first scenario is where edge subscription and EdgeSync will not be performed. In this scenario, to
prepare the Edge Transport server, the following tasks are performed:

 1. Ports: Verify that the perimeter network firewall that separates the Edge Transport server
from the Exchange organization is configured to enable SMTP communications on port 25.
This is required for the both the Edge Transport and Hub Transport servers to send and
receive emails.

 2. DNS: The Edge Transport servers in the perimeter network and the Hub Transport servers in
the Exchange organization must be able to locate each other by using host name resolution. You
must specify the appropriate DNS suffix for the Edge Transport server prior to its installation.
On the DNS servers that both the Edge Transport and Hub Transport servers are configured to
point to, configure host records in the appropriate forward lookup zones to resolve each server.
Alternatively, you can create host file entries on both the Edge Transport and Hub Transport
servers to resolve each other.

 3. Send Connector to Internet: Create and configure a Send Connector to route outbound
Internet messages. The address space to be configured on this connector is * , which means it
can route messages to all Internet domains. It is typically configured to use DNS but can also
be configured to forward to a smart host such as an ISP or other third - party vendor. The usage
type for this connector is Internet. Figure 9 - 3 shows the creation of a new Send Connector for
this purpose. The source bridgehead will be the Edge Transport server; however, you do not
have to specify this in the New-SendConnector cmdlet. Whenever Send Connectors are
created on an Edge Transport server, the SourceTransportServers parameter should be
empty because the local Edge Transport server is always assumed as the Source bridgehead
server.

c09.indd 245c09.indd 245 12/17/07 5:29:25 PM12/17/07 5:29:25 PM

Part II: Working with Server Roles

246

Figure 9-3

 The Edge Transport server will automatically be used as the source bridge head server
for this connector.

 4. Receive Connector from Internet: Next, you create a Receive Connector that will accept
messages from the Internet. The configuration on this connector should be such that it will
listen on all IP address ranges and will allow anonymous connections. This connector will also
be configured on the external network interface of Edge Transport server. This is shown in
Figure 9 - 4 .

c09.indd 246c09.indd 246 12/17/07 5:29:26 PM12/17/07 5:29:26 PM

Chapter 9: Confi guring the Edge Transport Server Role

247

Figure 9-4

 Notice the RemoteIPRange and PermissionGroups settings to allow all inbound Internet
traffic on port 25. The Receive Connector is bound to the external NIC on the server.

 Thus far you have a Send Connector to send mail to the Internet and a Receive Connector to
receive mail from the Internet. Two more connectors are required based on this scenario.

 5. Send Connector to Hub Server(s): Another Send Connector needs to be created and configured
to send messages inbound from the Internet to the Hub Transport servers inside the Exchange
organization. The usage type for this connector is internal. This connector ’ s address space will

c09.indd 247c09.indd 247 12/17/07 5:29:26 PM12/17/07 5:29:26 PM

Part II: Working with Server Roles

248

be configured based on the accepted domains configured for the organization. An easy way to
configure the address space for this connector is to specify “ - - ” (2 dashes) for the address space.
This essentially means that this connector will route mail for any authoritative domain or
internal relay domain configured for the organization. The smart host configured for this Send
Connector will be one or more Hub Transport servers in the Exchange organization. The source
bridgehead as usual will be the Edge Transport server but it is not specified. This is shown in
Figure 9 - 5 .

Figure 9-5

 6. Receive Connector from Hub Server(s): Finally, because this scenario does not use edge
subscription and EdgeSync, it is recommended that you create another Receive Connector on
the Edge Transport server other than the default. The default Receive Connector has a usage

c09.indd 248c09.indd 248 12/17/07 5:29:26 PM12/17/07 5:29:26 PM

Chapter 9: Confi guring the Edge Transport Server Role

249

type of Internet, which means it can accept anonymous connections. If edge subscription was
used, the EdgeSync process would be able to negotiate the authentication seamlessly. However,
because this is a manual configuration, you would need to create a Receive Connector of usage
type internal. It must be bound to the internal network adapter of the Edge Transport server.
This connector is shown in Figure 9 - 6 .

Figure 9-6

 The Receive Connector is bound to the internal adapter with an IP address of 172.16.8.55 and allows all
Hub Transport servers in the remote IP range to connect to the Edge Transport server.

 Hence, after completing a manual configuration, you should have the connectors configured on the
Edge Transport server shown in Figure 9 - 7 . Note that the only connector created automatically was
the Default Internal Receive Connector.

Figure 9-7

c09.indd 249c09.indd 249 12/17/07 5:29:27 PM12/17/07 5:29:27 PM

Part II: Working with Server Roles

250

 The second scenario, which is the one that is recommended , is where edge subscription and EdgeSync will
be performed. The following tasks are performed to fully integrate and associate the Edge Transport
server with the Exchange organization. This process ensures that the organization takes full advantage
of the message hygiene and anti - virus protection built into the Edge Transport server role. It also
requires the least administrative effort:

 1. Ports: Verify that the perimeter network firewall that separates the Edge Transport server from
the Exchange organization is configured to enable communications on ports 25 and 50636.
Because EdgeSync replicates data between Active Directory and ADAM, secure LDAP port 50636
for TCP communication must be opened on the firewall to enable directory synchronization from
the Hub Transport to ADAM on the Edge Transport server. Recall that synchronization is single
directional, hence the port can be opened one - way from the Hub to the perimeter network. Also
verify that on the Edge Transport server, you can connect locally to the LDAP port 50389. This is
the port to access the ADAM instance. An easy way to test this is to use the ldp.exe utility found
in the C:\WINDOWS\ADAM directory. Connect using the NetBIOS name of the Edge Transport
server and if no credentials are specified, it binds with the credentials of the locally logged - on
user. Finally, ensure that SMTP port 25 is open on the firewall for both the Edge Transport and
Hub Transport servers to send and receive emails.

 2. DNS: The Edge Transport servers in the perimeter network and the Hub Transport servers in
the Exchange organization must be able to locate each other by using host name resolution. You
must specify the appropriate DNS suffix for the Edge Transport server prior to its installation.
On the DNS servers that both the Edge Transport and Hub Transport servers are configured to
point to, configure host records in the appropriate forward lookup zones to resolve each server.
Alternatively, you can create host file entries on both the Edge Transport and Hub Transport
servers to resolve each other.

 3. License Edge Transport Server: You should license the server prior to running edge subscrip-
tion so that the subscribed Edge Transport server will appear as a licensed server. If performed
after the edge subscription, this information does not get updated for the organization without
re - subscribing the Edge Transport server.

 4. Configure Accepted and Remote Domains: This step must be performed on the Hub Transport
server and prepares the information to be propagated to the Edge Transport server. This step is
discussed further in the section “ Preparing the Hub Transport Server ” later in this chapter.

 5. Export Edge Subscription: This step is performed on an Edge Transport server and generates a
subscription file. This subscription file contains a public - private key pair as well as ADAM
bootstrap credentials that will be used to set up the initial synchronization between the Edge
Transport and Hub Transport servers. This file must be manually copied over to the Hub
Transport server and imported. The New-EdgeSubscription cmdlet is used to perform
these tasks. The syntax used for this cmdlet is New-EdgeSubscription -FileName
“c:\EdgeSubscription01.xml” .

 Any filename can be specified but it must have an .xml extension. Figure 9 - 8 shows what you
will see when this cmdlet is run.

 The process of generating this subscription file also creates an ExchangeSync Replication Account
(ESRA) in the ADAM database, which will be used for the initial synchronization. Figure 9 - 9 shows this
account.

c09.indd 250c09.indd 250 12/17/07 5:29:27 PM12/17/07 5:29:27 PM

Chapter 9: Confi guring the Edge Transport Server Role

251

Figure 9-8

Figure 9-9

c09.indd 251c09.indd 251 12/17/07 5:29:28 PM12/17/07 5:29:28 PM

Part II: Working with Server Roles

252

 6. Import Edge Subscription: This step is completed on the Hub Transport server. You manually
copy the EdgeSubscription01.xml file to the Hub Transport server and import it. This file
must be imported within 24 hours of its creation on the Edge Transport server. This step is
required on the Hub Transport server to complete the process of subscribing the Edge Transport
server to the Exchange organization. The New-EdgeSubscription cmdlet is used to specify
the file imported from the Edge Transport server as well as the Active Directory site the Edge
Transport server will be subscribed to. Figure 9 - 10 shows how this step is accomplished.

Figure 9-10

 So in Figure 9 - 10 the Get-ADSite cmdlet first obtains the Active Directory site name. Then the
 EdgeSubscription01.xml file is imported and finally the Start-EdgeSychronization
cmdlet initiates synchronization.

 At the end of this scenario, the connectors shown in Figure 9 - 11 are created automatically by the edge
subscription process: a Send Connector from the Edge Transport server to the Internet and a Send
Connector from the Edge Transport server to the Hub Transport servers in the Active Directory site to
which the Edge Transport server is subscribed. The Receive Connector already exists by default when
the Edge Transport role is installed.

Figure 9-11

c09.indd 252c09.indd 252 12/17/07 5:29:28 PM12/17/07 5:29:28 PM

Chapter 9: Confi guring the Edge Transport Server Role

253

 See Figure 9 - 15 in the next section for connectors created on the Hub Transport server after edge
subscription is imported. Keep in mind that an implicit Send Connector from the Hub Transport servers
that are in the same forest as the Edge Transport server is also created so all the Hub servers know how
to route outbound Internet mail to the Edge Transport server.

 Preparing the Hub Transport Server
 The actual steps required to prepare the Hub Transport server vary depending on whether edge
subscription and EdgeSync will be performed. It is highly recommended that you use edge subscription
and EdgeSync to subscribe the Edge Transport server to an Active Directory site in the Exchange
organization because this automates and simplifies the configuration on both the Edge and Hub
Transport servers.

 First consider the scenario where edge subscription and EdgeSync will not be performed. In this case,
to prepare the Hub Transport server, you should perform the following tasks:

 1. Ports: Verify that the perimeter network firewall that separates the Edge Transport server
from the Exchange organization is configured to enable SMTP communications on port 25.
This is required for both the Edge Transport and Hub Transport servers to send and
receive emails.

 2. DNS: The Edge Transport servers in the perimeter network and the Hub Transport servers in
the Exchange organization must be able to locate each other by using host name resolution. You
must specify the appropriate DNS suffix for the Edge Transport server prior to its installation.
On the DNS servers that both the Edge Transport and Hub Transport servers are configured to
point to, configure host records in the appropriate forward lookup zones to resolve each server.
Alternatively, you can create host file entries on both the Edge Transport and Hub Transport
servers to resolve each other.

 3. Send Connector to Edge Server: Configure a Send Connector to forward all outbound Internet
mail to the Edge Transport server for onward relay to the Internet. The address space for this
connector is typically “ * ” indicating that this connector will forward mails for all Internet
domains. The usage type will be internal and the authentication mechanism will be either basic
or Externally Secured. The source bridgehead server will be one or more Hub Transport servers
in the Active Directory site. In Figure 9 - 12 a Send Connector is configured to route outbound
mail to the Edge Transport server and its authentication mechanism is set to
 ExternalAuthoritative .

 4. The default Receive Connector automatically created during the installation of the Hub
Transport role suffices to receive mail from the Edge Transport server. No further configuration
is required.

 Hence, at the end of a manual configuration of the Hub Transport server, you should have the
connectors shown in Figure 9 - 13 .

c09.indd 253c09.indd 253 12/17/07 5:29:28 PM12/17/07 5:29:28 PM

254

Figure 9-12

Figure 9-13

c09.indd 254c09.indd 254 12/17/07 5:29:29 PM12/17/07 5:29:29 PM

Chapter 9: Confi guring the Edge Transport Server Role

255

 The second scenario, which is the one recommended for the Hub Transport server, occurs when edge
subscription and EdgeSync are performed. In this scenario, to prepare the Hub Transport server, you
should perform the following tasks. The edge subscription process is discussed in greater detail later in
this chapter.

 1. Ports: Verify that the perimeter network firewall that separates the Edge Transport server from
the Exchange organization is configured to enable communications on the following specified
ports. Because EdgeSync replicates data between Active Directory and ADAM, secure LDAP
port 50636 for TCP communication must be opened on the firewall to enable directory
synchronization from the Hub Transport to ADAM on the Edge Transport server. Recall
that synchronization is single directional, hence the port can be opened one - way from the Hub
to the perimeter network. As in the previous scenario, also ensure that SMTP port 25 is open on
the firewall for both the Edge Transport and Hub Transport servers to send and receive emails.

 2. DNS: The Edge Transport servers in the perimeter network and the Hub Transport servers in
the Exchange organization must be able to locate each other by using host name resolution. You
must specify the appropriate DNS suffix for the Edge Transport server prior to its installation.
On the DNS servers that both the Edge Transport and Hub Transport servers are configured to
point to, configure host records in the appropriate forward lookup zones to resolve each server.
Alternatively, you can create host file entries on both the Edge Transport and Hub Transport
servers to resolve each other.

 3. Configure Accepted and Remote Domains: This step must be performed on the Hub Transport
server and prepares the information to be propagated to the Edge Transport server. Accepted
domains are any Simple Mail Transfer Protocol (SMTP) namespace for which an Exchange
organization will send or receive email, including domains for which the Exchange organization
is authoritative, which means the Exchange organization will handle email delivery for
Recipients of that domain. By default one accepted domain is created and configured as
authoritative during Exchange installation. Accepted domains may also include domains for
which the Exchange organization will receive emails and then relay them to another email
server outside the organization for delivery to the intended Recipient. Such domains could be
configured as internal relay or external relay domains.

 Remote domains define settings for message delivery to external domains outside the Active
Directory forest. They override default delivery settings for all outbound messages.

 Hence, determine what domains will be authoritative and what domains will be relay, then
create corresponding accepted domains. Similarly, if you have need to control the types of
messages that are sent to a specific domain, create a remote domain entry.

 Figure 9 - 14 shows using the Get-AcceptedDomain cmdlet to view the configured accepted
domain ExchangeExchange.local . By default the domain name is configured as an
authoritative accepted domain. Now because this Exchange organization is authoritative for
 ExchangeExchange.com , add it as an accepted domain with a DomainType of Authoritative.
Next, assume you acquired a subsidiary called Namedpipes.net and must relay for this domain.
Create a new accepted domain with a DomainType of InternalRelay to their email server.
Finally, assume you send regularly to a remote domain called Mailtask.com and they only
accept messages in plain text. Then create and configure a remote domain called Mailtask.com
using the New-RemoteDomain cmdlet.

c09.indd 255c09.indd 255 12/17/07 5:29:29 PM12/17/07 5:29:29 PM

Part II: Working with Server Roles

256

Figure 9-14

c09.indd 256c09.indd 256 12/17/07 5:29:29 PM12/17/07 5:29:29 PM

Chapter 9: Confi guring the Edge Transport Server Role

257

 Additionally, you may configure internal SMTP servers on the Hub Transport server.
The InternalSMTPServers attribute specifies a list of internal Simple Mail Transfer
Protocol (SMTP) server IP addresses or IP address ranges that should be ignored by
Sender ID and connection filtering. This list of internal servers must be specified using the
Set-TransportConfig cmdlet prior to configuring EdgeSync. This setting will be propagated
to the Edge Transport server after EdgeSync is configured.

 4. Import Edge Subscription: Finally, you import the edge subscription file created on the
Edge Transport server. This file must be imported at least 24 hours after it is created on the Edge
Transport server. This step is required on the Hub Transport server to complete the process of
subscribing the Edge Transport server to the Exchange organization. The New-EdgeSubscription
cmdlet is used to specify the file imported from the Edge Transport server as well as the Active
Directory site the Edge Transport server will be subscribed to. This step was shown earlier in this
chapter in the section on “ Preparing the Edge Transport Server. ”

 At the end of this scenario, the Send Connectors shown in Figure 9 - 15 are created automatically
on the Hub Transport server by the edge subscription process. No other Receive Connector is
created other than the defaults.

Figure 9-15

 Verifying Configuration
 There are a couple of things to observe after the edge subscription and edge synchronization process
completes. You can use the Start-EdgeSynchronization cmdlet to ensure that the synchronization is
kicked off and the Test-EdgeSynchronization cmdlet to view the synchronization status. The
Start-EdgeSynchronization cmdlet is shown in Figure 9 - 16 .

 Some key items to always check here after running the Start-EdgeSynchronization cmdlet are the
result, type, and failure details as well as items scanned or deleted. These provide an insight into
whether changes made are getting updated on the Edge Transport server. For example, if you create a
new user, you can determine by the items scanned in the Recipients type to see if it was incremented.

c09.indd 257c09.indd 257 12/17/07 5:29:30 PM12/17/07 5:29:30 PM

Part II: Working with Server Roles

258

Figure 9-16

 Another way to verify if a user created was replicated to the ADAM database is to use the
Test-EdgeSynchronization cmdlet. This is shown in Figure 9 - 17 .

 When this cmdlet is run, it displays some important information. The name specified is always that of
the Edge Transport server and the LeaseHolder is the Hub Transport server. The ConnectionResult
determines whether the test run was successful. If it is not, the FailureDetail property is populated
with the status of the failure.

c09.indd 258c09.indd 258 12/17/07 5:29:30 PM12/17/07 5:29:30 PM

Chapter 9: Confi guring the Edge Transport Server Role

259

Figure 9-17

 Also in Figure 9 - 17 , we used the VerifyRecipient parameter of the Test-EdgeSynchronization
cmdlet to verify whether Trainee19 has been replicated to the Edge Transport server. The status
 Synchronized for the RecipientStatus tells us that it has.

 Another way to verify that the initial edge synchronization completed is to notice the
OU= OU=MSExchangeGateway , CN=Recipients hierarchy on the ADAM database populated as
shown in Figure 9 - 18 .

 Sometimes due to a non delivery report or Recipient failure event logged on the Edge Transport server, it
may be necessary to determine which Recipient a specific CN points to. In the example in Figure 9 - 19 , in
ADAM we select a CN for a Recipient 6ff45354-9502-4771-b178-7c97a864cdef .

c09.indd 259c09.indd 259 12/17/07 5:29:30 PM12/17/07 5:29:30 PM

Part II: Working with Server Roles

260

Figure 9-18

Figure 9-19

c09.indd 260c09.indd 260 12/17/07 5:29:31 PM12/17/07 5:29:31 PM

Chapter 9: Confi guring the Edge Transport Server Role

261

 You can simply take this information to a domain controller in the Active Directory site and enter the
search filter shown in Figure 9 - 20 .

Figure 9-20

 Notice that this points to CN=Trainee5,OU=ADUsers,DC=ExchangeExchange,DC=local as shown in
Figure 9 - 21 .

 Failures to deliver to a Recipient could result if the user ’ s primary SMTP address, for example, is
modified and EdgeSync did not synchronize the change to ADAM for some reason. Ensure that the
EdgeSync service is running and use the VerifyRecipient parameter to test that the user is
synchronized.

c09.indd 261c09.indd 261 12/17/07 5:29:31 PM12/17/07 5:29:31 PM

Part II: Working with Server Roles

262

 For message flow inbound to the Exchange organization via the Edge Transport server, the queues will
show a DeliveryType of Smart host with the Hub Transport server as the next hop. (See Figure 9 - 22 .)

Figure 9-22

Figure 9-21

c09.indd 262c09.indd 262 12/17/07 5:29:31 PM12/17/07 5:29:31 PM

Chapter 9: Confi guring the Edge Transport Server Role

263

 Edge Cloning
 Organizations are not limited to a single Edge Transport server install. You can install and configure
multiple Edge Transport servers in your perimeter network. This is advantageous because it provides
redundancy and enables load balancing if your DNS is configured with multiple Mail Exchanger (MX)
records pointing to one of each Edge Transport server with the same priority.

 However, to make sure all the Edge Transport servers deployed in the perimeter network are of
identical configuration, cloned configuration scripts are provided in the Exchange Management Shell to
copy the configuration of one Edge Transport server and duplicate it on as many target Edge Transport
servers as needed. These scripts are located in the C:\Program Files\Microsoft\Exchange
Server\Scripts directory if you chose the default path for installation.

 The clone configuration process involves exporting the source Edge Transport server configuration using
the ExportEdgeConfig.ps1 script to an intermediate XML file. Next you validate whether the settings
exported are valid for the target server by running the ImportEdgeConfig.ps1 script, which checks the
intermediate XML file and creates an answer file. Finally, you clone the target Edge Transport server by
importing the configuration using a combination of the ImportEdgeConfig.ps1 script, the
intermediate XML file, and the answer file.

 As mentioned earlier, in Exchange Server 2007 SPI, the information that is cloned now includes the
 TransportConfig object.

 Transport Agents
 In previous versions of Exchange, you could use event sinks to customize some functionality not
available by default in the product, such as adding disclaimers to messages or acting on messages
depending on where the message is located in transport, for example OnMessagePostCategorize ,
 OnMessagePreCategorize , OnArrival , and so forth. In Exchange Server 2007, transport event sinks
have been replaced by transport agents. These agents or rules allow you to create customized software
solutions that act on messages as they pass through the transport pipeline on a Hub Transport server or
Edge Transport server.

 The following is list of transport agent cmdlets used to view and configure transport agents in Exchange
Server 2007:

❑ Disable-TransportAgent

❑ Enable-TransportAgent

❑ Get-TransportAgent

❑ Set-TransportAgent

❑ Uninstall-TransportAgent

c09.indd 263c09.indd 263 12/17/07 5:29:32 PM12/17/07 5:29:32 PM

Part II: Working with Server Roles

264

 Get - TransportAgent
 This cmdlet allows you view the configuration of a transport agent. It has only two parameters, the
 Identity and DomainController parameters. The syntax for this cmdlet is:

Get-TransporAgent[-Identity < String >] [-DomainController < Fqdn >]

 For a detailed list run the following in the Exchange Management Shell: get-help
Get-TransportAgent -detailed .

 Set - TransportAgent
 This cmdlet allows you modify the configuration of a transport agent. For a detailed list run the
following in the Exchange Management Shell: Get-Help Set-TransportAgent -detailed .
The syntax for this cmdlet and parameters are shown here:

Set-TransportAgent -Identity < String > [-Confirm [< SwitchParameter >]]
[-DomainController < Fqdn >] [-Priority < Nullable >] [-WhatIf
[< SwitchParameter >]]

 A key parameter to note is Priority < Nullable > . This parameter is used to specify the priority of an
agent that controls the order in which the agent processes email messages. The maximum value set
should not exceed the number of agents installed. The minimum value is 0. Transport agents with a
priority closer to 0 process emails first.

 Enable - TransportAgent
 This cmdlet allows you to enable a configured transport agent. For a detailed list run the following in the
Exchange Management Shell: Get-Help Enable-TransportAgent -detailed . The syntax for this
cmdlet and parameters are shown here:

Enable-TransportAgent -Identity < String > [-Confirm [< SwitchParameter >]]
[-DomainController < Fqdn >] [-WhatIf
[< SwitchParameter >]]

 Some transport agents are installed by default on both the Edge Transport and Hub Transport server but
the number of agents installed differs. Whereas the Hub Transport server has two transport agents by
default — the Transport Rule agent and Journaling agent — the Edge Transport server has the agents
shown in Figure 9 - 23 installed by default. The agents existing by default on the Hub Transport server do
not exist on the Edge Transport server.

c09.indd 264c09.indd 264 12/17/07 5:29:32 PM12/17/07 5:29:32 PM

Chapter 9: Confi guring the Edge Transport Server Role

265

Figure 9-23

Figure 9-24

 These transport agents, written to take advantage of SMTP events, can be triggered at various stages of
the TransportPipeline as shown in Figure 9 - 24 .

 It is worth noting that although message hygiene and other Edge Transport agents are not installed on
a Hub Transport server by default, they can still be installed manually if the Hub Transport server is
Internet facing. A few of the agents installed on the Edge Transport server are discussed next.

c09.indd 265c09.indd 265 12/17/07 5:29:32 PM12/17/07 5:29:32 PM

Part II: Working with Server Roles

266

 Address Rewrite Agent
 The Edge Transport server provides message address rewrite functionality. When companies merge and
want to present a single email address for all outgoing emails irrespective of the internal company,
address rewrite becomes invaluable. Address rewriting agents function by rewriting the SMTP headers
on email messages that are sent and received by an Edge Transport server. It consists of the Outbound
Address Rewrite agent and the Inbound Address Rewrite agent. The following cmdlets are used to
configure this agent:

❑ Get-AddressRewriteEntry

❑ New-AddressRewriteEntry

❑ Set-AddressRewriteEntry

 ❑ Remove-AddressRewriteEntry

 Edge Rules Agent
 This agent is identical to the Transport Rules agent implemented by default on the Hub Transport
server. By use of transport rules, this agent limits the number of unwanted messages entering
the organization. By acting on messages on the perimeter network before entering the messaging
organization, unwanted messages, denial of service attacks, and risks due to virus are mitigated.
Each computer running the Edge Transport server role contains its own transport rule configuration
stored locally in ADAM.

 Journaling Rule Agent
 This agent runs only on the Hub Transport server and is mainly for email compliance. It is installed and
enabled by default on the Hub Transport server. When configured it enforces email retention policies on
messages sent or received by Recipients within the Exchange organization or to and from Internet
Recipients or both. The following cmdlets can be used to configure this agent on the Hub Transport
server:

❑ Disable-JournalRule

❑ Enable-JournalRule

❑ Get-JournalRule

❑ New-JournalRule

❑ Remove-JournalRule

❑ Set-JournalRule

 Anti - Spam Agents
 The Edge Transport server role guarantees message hygiene using anti - spam agents by evaluating the
following things about every email message: the message sender, the sending server, IP address and
domain, the destination Recipient, and the contents of the message. Based on these, anti - spam agents are
implemented by the Edge Transport server. A spam confidence level (SCL) is stamped on each message

c09.indd 266c09.indd 266 12/17/07 5:29:33 PM12/17/07 5:29:33 PM

Chapter 9: Confi guring the Edge Transport Server Role

267

evaluated and messages can be accepted or rejected based on the organization ’ s configuration.
Anti - spam filtering installed by default includes the following:

❑ IP Allow List

❑ IP Allow List Provider

❑ IP Block List

❑ IP Block List Provider

❑ Content Filtering

❑ Sender Filtering

❑ SenderID Sender Reputation

❑ Recipient Filtering

❑ Recipient Filtering

 These are discussed in the following sections.

 IP Allow List
 This feature indicates the IP addresses that are always allowed to connect to and transmit email
messages to this server. You can configure the feature to accept connections from individual IP addresses
or from ranges of IP addresses. IP addresses found in this list will bypass most anti - spam agents except
sender and Recipient filtering. The following cmdlets are used to view and configure the IP Allow List:

❑ Get-IPAllowListConfig

❑ Set-IPAllowListConfig

❑ Add-IPAllowListEntry

❑ Get-IPAllowListEntry

❑ Remove-IPAllowListEntry

 IP Allow List Provider
 IP Allow List Providers maintain lists of email sending domains that can be relied on to not send junk
email. The following cmdlets are used to view and configure the IP Allow List Provider:

❑ Get-IPAllowListProvider

❑ Add-IPAllowListProvider

❑ Remove-IPAllowListProvider

❑ Set-IPAllowListProvider

❑ Test-IPAllowListProvider

❑ Get-IPAllowListProvidersConfig

❑ Set-IPAllowListProvidersConfig

c09.indd 267c09.indd 267 12/17/07 5:29:33 PM12/17/07 5:29:33 PM

Part II: Working with Server Roles

268

 IP Block List
 This list contains IP addresses that are never allowed to connect to the Edge Transport or Hub Transport
server if configured on it. You can specify individual or a range of IP addresses. The following cmdlets
can be used to view and modify the IP Block List:

❑ Get-IPBlockListConfig

❑ Set-IPBlockListConfig

❑ Get-IPBlockListEntry

❑ Add-IPBlockListEntry

❑ Remove-IPBlockListEntry

 IP Block List Provider
 This feature allows real - time block list provider services to track servers on the Internet suspected of
sending UCE mails. While you specify providers to use, you can also specify domains that would bypass
this real - time block list. The following cmdlets can be used to view and configure this feature:

 ❑ Get-IPBlockListProvider

❑ Set-IPBlockListProvider

❑ Add-IPBlockListProvider

❑ Remove-IPBlockListProvider

❑ Test-IPBlockListProvider

❑ Get-IPBlockListProvidersConfig

❑ Set-IPBlockListProvidersConfig

 If you have previously configured the anti - spam connection filtering in your Exchange 2003 environment
and you are migrating to Exchange Server 2007, you can take advantage of a new tool now available
from Microsoft that migrates your list of allow/deny addresses, block list providers, blocked senders,
and domains. You can download the tool from the following link: microsoft.com/downloads/
details.aspx?FamilyId=805EAF35-EBB3-43D4-83E4-A4CCC7D88C10 & displaylang=en .

 Content Filtering
 This feature filters junk email by a method that learns what is and what is not spam. This agent filters all
messages that come through all Receive Connectors on the server. It is not a best practice, however, to
filter messages from trusted partners or from inside the Exchange organization to reduce the chance of
false positives. The contents of the message are constantly scanned for specific words or phrases and
over time what constitutes spam can be easily determined. You can set the message filtering threshold,
how content is analyzed, and what action to take when the filter detects junk email. The underlying
technology used is the Intelligent Message Filter (IMF), which existed in Exchange Server 2003 but is
now greatly improved. Microsoft Anti - spam Update Service provides updates regularly to ensure that
the most up - to - date information is always included when the Intelligent Message Filter runs.

c09.indd 268c09.indd 268 12/17/07 5:29:33 PM12/17/07 5:29:33 PM

Chapter 9: Confi guring the Edge Transport Server Role

269

 The Content Filter agent assigns a spam confidence level (SCL) rating to each message. The SCL rating
ranges from 0 to 9 with a higher rating indicating that a message is more likely to be spam. If a message
is detected to be spam, the Content Filter agent can be configured to delete the message, reject the
message, or quarantine the message. Some organizations may configure the Content Filter agent to
delete messages that have an SCL rating of 8 or higher, reject messages with an SCL rating of 7, and
quarantine messages with an SCL rating of 5.

 To accommodate false positives, in which case a valid message is incorrectly tagged as spam, the spam
quarantine feature is available in the Content Filter agent to provide a temporary storage location for
messages that are identified as spam and that should not be delivered to a user mailbox inside the
organization. After a configured period of time, the messages can be deleted.

 Another protection available in the Content Filter agent is the ability to act on a safelist aggregation. This
feature collects safelists that Outlook or Outlook Web Access clients configure for users that can always
send to them regardless of the SCL rating of the message. The Content Filter agent takes this information
and makes it available on the Edge Transport server. The following cmdlets can be used to configure the
Content Filter agent:

❑ Get-ContentFilterConfig

❑ Set-ContentFilterConfig

❑ Add-ContentFilterPhrase

❑ Get-ContentFilterPhrase

❑ Remove-ContentFilterPhrase

❑ Update-SafeList

 To configure the Content Filter agent, several steps are required:

 1. First the Content Filter agent must be enabled on the Edge Transport server. Where multiple
Edge Transport servers exist, it must be configured separately on each. To enable the Content
Filter agent, run following:

Set-ContentFilterConfig -Enabled $True

 2. By default, though, the Content Filter agent is enabled on the Edge Transport server for external
messages. It can, however, be enabled for internal messages also. This cannot be performed via
the Exchange Management Console. To enable content filtering for internal messages, run the
following:

Set-ContentFilterConfig -InternalMailEnabled $True

 3. Next, if you are going to configure a quarantine SCL threshold, a spam quarantine mailbox must
be specified. This will enable all messages at or greater than the quarantine threshold to be sent
to a configured email address. To achieve this, it is recommended that a separate Exchange
Server database be large enough to hold quarantined messages. Then create an Active Directory
user account with an Exchange mailbox and create a profile for it.

c09.indd 269c09.indd 269 12/17/07 5:29:33 PM12/17/07 5:29:33 PM

Part II: Working with Server Roles

270

 4. Next, configure the Content Filter agent with the email address of the spam quarantine mailbox
configured earlier. You can do that by running the following command:

Set-ContentFilterConfig -QuarantineMailbox spam@ExchangeExchange.local

 5. Finally, configure the SCL threshold for messages and continually monitor the spam quarantine
mailbox. In here you can use the Send Again option in Outlook to release legitimate messages by
resending the original message. You can also monitor the agent log for false positives and adjust
the SCL threshold accordingly. To diagnose why a message is flagged as spam, you can review
the anti - spam stamp and anti - spam report on the message by looking at the Internet headers in
Outlook 2007. Here is an example of an anti - spam report:

X-MS-Exchange-Organization-Antispam-Report: SenderOnRecipientSafeList
X-MS-Exchange-Organization-SCL: -1

 X - MS - Exchange - Organization - SenderIdResult:
PASS Junk E - Mail Filter

 Because anti - spam is a two - prong approach, on the client side, the Outlook Junk E - Mail filter evaluates
whether a message should be treated as a junk email based on factors such as time, time message
was sent, message content, and other data collected by the Exchange Server anti - spam filters. When
a message is flagged by this filter, it is delivered to the junk email folder rather than the inbox. The
Recipient can manually move the message to the inbox and add the sender into its safelist if it ’ s a
legitimate sender.

 Sender Filtering
 You use this feature to specify a list of email senders that you want to block receipt of email from. You
can configure the feature to block individuals, single domains, or entire domain hierarchies. You can also
specify how Exchange Gateway Services will respond when the blocked sender transmits a message to
this server. The following cmdlets can be used to view and configure SenderID filtering:

❑ Get-SenderFilterConfig

❑ Set-SenderFilterConfig

 Sender ID
 This feature, currently a proposed standard, was established to counter email domain spoofing and to
provide greater protection against phishing. You can use this feature to check the sender ’ s Purported
Responsible Address (PRA) when the Edge Transport server receives an email. You can also specify how
Edge Transport server should handle messages from senders lacking an acceptable PRA. The following
cmdlets allow you to configure SenderID:

❑ Get-SenderIdConfig

❑ Set-SenderIdConfig

❑ Test-SenderId

c09.indd 270c09.indd 270 12/17/07 5:29:34 PM12/17/07 5:29:34 PM

Chapter 9: Confi guring the Edge Transport Server Role

271

 Sender Reputation
 The Sender Reputation feature collects information about recent email messages received from specific
IP addresses. As it evaluates each message, if a sender IP address appears to be the source of junk or
spam email, the source is added to the list of blocked IP addresses. Other parameters can be configured
such as the length of time the sender will be blocked. The following cmdlets will be covered in this
section:

❑ Get-SenderReputationConfig

❑ Set-SenderReputationConfig

 Recipient Filtering
 This agent ’ s feature specifies email Recipients from which the server will not accept emails. It can be
configured to block individuals, domains, or even messages to users not included in the Recipient
directory. You can configure exceptions as well as how the Edge Transport server will respond when
a message is blocked. The following cmdlets are used to view and configure this agent:

❑ Get-RecipientFilterConfig

❑ Set-RecipientFilterConfig

 Summary
 This chapter discussed the new Exchange server role introduced in Exchange Server 2007 — the Edge
Transport server role. This role is unique among other server roles because it is not directly dependent
on Active Directory and is installed in a perimeter network. The focus of the Edge Transport server is for
inter - organizational email communication, message hygiene, and security. It tackles Unsolicited
Commercial E - mail (UCE) and risk of denial of service attacks perpetrated via email.

 You also saw how the edge subscription and edge synchronization processes enable the Edge Transport
server obtain information from Active Directory via its replication to the ADAM directory service.
Although you can manually configure Send and Receive Connectors after installing the Edge Transport
server, it is highly recommended that you use the edge subscription and synchronization processes to
associate the Edge Transport server to an Active Directory site in your Exchange organization. Only
when this is done can you use the Recipient lookup feature or safelist aggregation. You also saw the
features introduced in Exchange Server 2007 SP1 to enhance the functionality of the Edge Transport
server.

 You looked at the two scenarios for integrating the Edge Transport server into an organization: when it is
manually configured and when edge subscription and EdgeSync are used.

 Finally, this chapter looked at Edge Transport server cloning and message hygiene using transport
agents.

c09.indd 271c09.indd 271 12/17/07 5:29:34 PM12/17/07 5:29:34 PM

c09.indd 272c09.indd 272 12/17/07 5:29:34 PM12/17/07 5:29:34 PM

 Unified Messaging

 When Microsoft released Exchange Server 2007, one of the coolest features included was Unified
Messaging. For those who are not familiar with this, Unified Messaging, or UM (pronounced
either as the two letters individually or as the interjection that speech coaches despise), is a role
within Exchange that allows users to receive voicemail and faxes directly to their mailboxes! It will
even let you dial a number and then play your messages, read your email, and dictate your
schedule to you. This role also integrates with Microsoft Office Communicator Server to create one
of the feature - rich IP voice systems to date. UM fills a very important niche because it allows IT
departments to reduce the complexity of the infrastructure and enables them to retire aging voice
mail platforms. For more information on UM please see microsoft.com/technet/
prodtechnol/exchange/2007/evaluate/overview/default.mspx .

 To get the most out of this chapter, you must have the UM role installed on a server (see Chapter 3
for installation information). It is also advantageous, though not required, to have a cursory
understanding of how phone systems, PBXs, and audio encoding work.

 In Chapter 3 you learned how to install the UM role. Now you are going to build from there and
configure UM with the minimum amount of options to make it work. From there you add onto
these cmdlets, introduce new cmdlets, configure the UM Virtual Directory, and finish up the
chapter with a list of the UM cmdlets. For an authoritative definition of every cmdlets option, refer
to the Microsoft Exchange Server 2007 help file (also knows as the CHM file).

 This chapter covers the following topics:

❑ Creating UMDialPlan, UMIPGateway, UMMailboxPolicy, and UM Server

❑ Using the Get-UM cmdlets to retrieve data

❑ UM user management

❑ AutoAttendant management

❑ Removing and disabling UM features

c10.indd 273c10.indd 273 12/17/07 3:45:29 PM12/17/07 3:45:29 PM

Part II: Working with Server Roles

274

Outlook.exe

Outlook.exe
Office Phones

VOIP Gateway
PBX

Outlook Anywhere
Outlook Web

Access
ActiveSync

External Phone Fax

Mailbox Server

Client Access
Server

Hub Server

Unified Messaging
Server

Domain Controller

Firewall

SMTPTDM VOIP

MAPIMAPI

HTTPS RPC/HTTPS

Internet

PSTN

HTTPS

TDM

TDM

TDM TDM

MAPI

MAPI
VOIP

LDAP
LDAP

LDAP SMTP TDM VOIP

MAPI HTTPS RPC/HTTPS

Figure 10-1

 Figure 10 - 1 shows the architecture and components used in a Unified Messaging environment.

c10.indd 274c10.indd 274 12/17/07 3:45:30 PM12/17/07 3:45:30 PM

Chapter 10: Unifi ed Messaging

275

 Creating UMD ialPlan, UMIPG ateway,
and UMM ailboxPolicy, and Setting up
the UM Server

 This section covers the following cmdlets:

❑ New-UMDialPlan

❑ New-UMIPGateway

 ❑ New-UMMailboxPolicy

❑ Set-UMServer

❑ Enable-UMMailbox

❑ Set-UMDialPlan

❑ Set-UMIPGateway

 To get UM up and running you must first run a few cmdlets in order to have a working configuration.
The first cmdlet is the New-UMDialPlan . There are two required parameters: the dial plan name and the
number of digits in the extension. The Name refers to the name of the UM dial plan; in this instance it is
test. The number of digits in extension refers to the number of digits in the end user ’ s telephone number.
For most organizations it is the last four in the phone number. The URI type is not necessary, but can be
added if your system is not using TelExtn and is using E164 or SipName to receive information from the
PBX. If you do not know how Exchange will communicate with the PBX, it would be wise to ask your
PBX admin to find out what options your PBX has for interfacing with the UM server. For a list of
supported connections, see microsoft.com/technet/prodtechnol/exchange/telephony-
advisor.mspx . The last required option is to generate the UM mailbox policy. If you were to use the
wizard in the EMC it would automatically create one. The syntax for the New - UMDialPlan is as follows:

New-UMDialPlan -Name < String > -NumberOfDigitsInExtension < Int32 > [-
AccessTelephoneNumbers < MultiValuedProperty >] [-Confirm [< SwitchParameter >]] [-
DomainController < Fqdn >] [-FaxEnabled < $true | $false >] [-GenerateUMMailboxPolicy
 < $true | $false >] [-NDREnabled < $true | $false >] [-TemplateInstance < PSObject >] [-
URIType < TelExtn | E164 | SipName >] [-VoIPSecurity < SIPSecured |Unsecured |
Secured >] [-WhatIf [< SwitchParameter >]] [< CommonParameters >]

 In the following example, the UM mailbox policy is blank so you can learn what goes into a UM
mailbox policy:

New-UMDialPlan -name test -NumberOfDigitsInExtension 4 -URIType TelExtn -
GenerateUMMailboxPolicy $false

 The second component required in a working UM configuration is to configure the UM IP gateway. For
the New-UMIPGateway cmdlet there are also three required parameters: name, IP address, and UM dial
plan. The name is how the UM IP gateway will be referred to. The IP address of this device is what will
originate the SIP conversation. The IP address can refer to a standalone device that acts as a bridge
between PBX and the IP world via SIP, or it can be a card within the PBX that handles the SIP initiation.

c10.indd 275c10.indd 275 12/17/07 3:45:30 PM12/17/07 3:45:30 PM

Part II: Working with Server Roles

276

Lastly, the UM dial plan will be the name of the dial plan created earlier. The New - UMIPGateway cmdlet
has the following syntax:

New-UMIPGateway -Name < String > -Address < UMSmartHost > [-Confirm
[< SwitchParameter >]] [-DomainController < Fqdn >] [-TemplateInstance < PSObject >] [-
UMDialPlan < UMDialPlanIdParameter >] [-WhatIf [< SwitchParameter >]]
[< CommonParameters >]

 In our case, we are able to use the NewUMIPGateway cmdlet to create a dial plan named test using the
following command:

New-UMIPGateway -Name test -Address 2.4.191.254 -UMDialPlan test.

 By specifying a dial plan, a default hunt group is automatically created and assigned to the
 UMIPGateway . If no dial plan is specified, the UMHuntgroup will have to be created and associated
manually via the New-UMHuntGroup cmdlet. Creating the UM hunt group manually requires the setting
the associated dial plan, the IP gateway of the SIP appliance, and a descriptive name.

 The next step is to create the UM mailbox policy using the New - UMMailboxPolicy cmdlet. The
UMMailboxPolicy cmdlet has the following syntax:

New-UMMailboxPolicy -Name < String > -UMDialPlan < UMDialPlanIdParameter > [-Confirm
[< SwitchParameter >]] [-DomainController < Fqdn >] [-TemplateInstance < PSObject >] [-
WhatIf [< SwitchParameter >]] [< CommonParameters >]

 There are two required parameters for this cmdlet. The first is the name of the UM mailbox policy and
the second is the associated dial plan:

New-UMMailboxPolicy -name UMpolicy1 -UMDialPlan test.

 The final component that needs to be configured in order to have a working configuration is that the UM
dial plan needs to be associated to the UM server. Using the Set-UMServer cmdlet with the -DialPlan
parameter finishes the basic configuration:

Set-UMServer -Identity Server -DialPlan test

 Now that the server - side components have been created, all that is left to do is enable users. To
accomplish this, you use the Enable-UMMailbox cmdlet. This cmdlet has only two required parameters:
the identity of the user that will be activated and the UMMailboxPolicy. The Enable-UMMailbox cmdlet
has the following syntax:

Enable-UMMailbox -Identity < MailboxIdParameter > -UMMailboxPolicy
 < MailboxPolicyIdParameter > [-AutomaticSpeechRecognitionEnabled < $true | $false >] [-
Confirm [< SwitchParameter >]] [-DomainController < Fqdn >] [-Extensions
 < MultiValuedProperty >] [-IgnoreDefaultScope < SwitchParameter >] [-NotifyEmail
 < String >] [-PilotNumber < String >] [-Pin < String >] [-PinExpired < $true | $false >][-
SIPResourceIdentifier < String >] [-ValidateOnly < SwitchParameter >] [-WhatIf
[< SwitchParameter >]] [< CommonParameters >]

c10.indd 276c10.indd 276 12/17/07 3:45:30 PM12/17/07 3:45:30 PM

Chapter 10: Unifi ed Messaging

277

 For the sake of this writing, it is best practice to include the Extensions parameter. For the identity of
the user, any of the following are accepted for the Identity parameter:

❑ ADObjectID: exchangeexchange.com\sales\john doe The syntax of the AD object is
 domain\OU\name .

❑ GUID Ex: (43CBD6FF - AC3B - 4A8F - 8906 - F14EB33A0B31) A GUID is a globally unique identifier.
Think of it as a serial number or a MAC address. Two GUIDs cannot be the same in an Active
Directory forest.

❑ DN: The distinguished name can be the full name.

 The distinguished name is the LDAP listing of the user. It contains the user ’ s full name the
organizational unit (OU) that they reside in as well as the domain name. The following is an example of
a user whose full name is John Doe, resides in the Sales OU, and is in the domain exchangeexchange
.com: CN=John Doe,OU=Sales,DC=exchangeexchange,DC=com .

❑ Domain\Account – User account, and so on: Typically this is the user ’ s logon name that is used
when the user logs in to the domain. Following a naming convention of the first initial of the
first name and the complete last name, John Doe from sales would have the following logon
name: jdoe .

❑ UPN: The UPN, or user principal name, is default the user ’ s logon name @ domain. So for John
Doe, it would be jdoe@exchangeexchange.com . The UPN, like the domain name and the
GUID, must be unique to the domain.

❑ LegacyExchangeDN: Legacy DN is included for backward compatibility for previous versions
of Exchange. /o=ExchangeExchange/ou=Exchange Administrative Group
(FYDIBOHF23SPDLT)/cn=Configuration/cn=Servers/cn=MB902

❑ SmtpAddress: This is the address that the user uses to send/receive mail. For example:
 John.Doe@exchangeexchange.com .

❑ Alias: This is usually the short name of a user.

 In the following example, the -Extensions, -PIN, -PINExpired, and -UMMailboxPolicy have
been set to allow for a more functional UM user once you enable the UM mailbox:

Enable-UMMailbox -Identity john.doe@exchangeexchange.com -Extensions 4242 -PIN
458236 -PINExpired $false -UMMailboxPolicy UMpolicy1

 If everything on the PBX and network has been configured correctly, you have a basic working
configuration that allows the UM server to receive voice mail, and for UM - enabled users to call in and
have the voice mails, email, and calendars read to them. However, if you were to leave the UM cmdlets
here and go to the next chapter you would be doing a great disservice to all the really cool features that
make the users forget their antiquated, feature - lacking voice mail systems.

 Now that you ’ ve run a couple of UM cmdlets, you ’ re going to review the configurations that you have
made. In order to do this you use the cmdlets that start with “ Get-UM ” . The Get-UMDialPlan will show
the dial plan that was just created, the name of the server that it has been applied to, and the current
status (enabled).

c10.indd 277c10.indd 277 12/17/07 3:45:31 PM12/17/07 3:45:31 PM

Part II: Working with Server Roles

278

 Get-UMIPGateway shows the configured UM IP gateway. Remember if you want to see more detailed
information on any of the Get-* cmdlets, pipe the output to a Format-List (| fl) to see more
information.

 Use Get-UMMailboxPolicy | fl to see the output of what you created with the
New-UMMailboxPolicy and to see all the additional parameters that can be configured for a more
feature - rich deployment of UM!

 The Get-UMServer shows the configuration applied to the UM server. If no additional parameters are
specified with the cmdlet, it displays the server name, the dial plan, languages installed for the UM role,
and the status.

 To verify which users have Unified Messaging enabled, the Get-UMMailbox cmdlet returns all active
UM users. This cmdlet also shows users who have been disabled in Active Directory, but are still UM
enabled.

 A quick review shows that you have created the UMDialPlan, UMIPGateway, and the UMMailboxPolicy.
From there you applied these to the UM server and enabled a test UM user. From there you used some of
the Get-UM* cmdlets to verify your configurations. Now you build on some of these cmdlets to enable
and set more of the features Unified Messaging has to offer.

 Setting UM Features using
the Set - UM Cmdlets

 Once the initial UM components have been created using the New - UM cmdlets, additional functionality
can be added or removed through the use of the Set - UM cmdlets. This section deals with the following
cmdlets:

❑ Set-UMDialPlan

❑ Set-UMIPGateway

❑ Set-UMMailboxPolicy

 Setting the UM Dial Plan
 One of the first things to change after the system has been configured is the options that are available
under the Set-UMDialPlan . The Set - UMDialPlan cmdlet has a dizzying array of options to allow for
customizing dial plans. Some features that are configurable within the dial plan deal with changes to the
fax status, audio encoding, country codes, default languages, announcements, security, recordings,
greetings, and the operator extension. None of these are required parameters, but if you are replacing an
aging voice mail system, it is important to provide the same level of features, if not more features, than
the old system. Unified Messaging has native support for faxing capabilities. If your PBX can pass a T.38
tone or is fax over IP (FoIP) capable, the UM server can be configured to receive faxes. To enable the UM
server to receive faxes use the Set-UMDialPlan -Identity “dial plan name” -FaxEnabled

c10.indd 278c10.indd 278 12/17/07 3:45:31 PM12/17/07 3:45:31 PM

Chapter 10: Unifi ed Messaging

279

$true . If at a later time you do not want to use faxing, or decide to use a different dial plan, it can be
disabled using the same cmdlet with the $false option. During our initial implementation of Unified
Messaging a lot of testing was done with different audio codecs. UM has three options available:
G711, WMA, and GSM. Each codec has a different sampling rate and will result in a different size of the
voice mail file attachment. By default this is set to WMA, but you may need to change it to compensate
for poor voice quality or latency issues. To change the audio codec, you pass one of the three options,
G711, WMA, or GSM, to the AudioCodec parameter. If you want to change the list of users that
someone can choose from when they call in and try to dial by name, you use the ContactScope
parameter. This parameter has five options to choose from: DialPlan, GlobalAddressList,
Extension, AutoAttendantLink, and AddressList . By default the mailbox users that are
included in the dial plan.

 UM administrators will want to configure the country or region code (CountryOrRegionCode) as well
as the international access code (InternationalAccessCode) to allow for international dialing or
dialing outside of your area. This does not need to be configured for area codes in the United States. Also
set the outside line access code if users typically have to dial 9+number (OutsideLineAccessCode).

 The next set of options pertains to user settings within the call. To keep the number of available lines
open for users to call in, it may be necessary to adjust the number of times an incorrect logon can be
entered before the call is disconnected. This is accomplished with the LogonFailuresBeforeDisconnect
parameter. The default value is 3. During the pilot phase of UM, it would be prudent to set this value
higher, because it may take users some time to acclimate to this new voice mail system. Once the user
has successfully entered a PIN and is navigating through the call tree, two parameters may need to be
modified to compensate for user error and latency. Input failures (InputFailuresBeforeDisconnect)
refers to the number of times a user can incorrectly enter input into the system, either verbally or via
DTMF, before the call is disconnected. By default this value is set to 3. The other parameter is the input
timeout (InputTimeout). The value for this parameter is measured in seconds and is 5 by default.
In this case pilot phase of UM a lot of effort was concentrated on simulating different kinds of user
behaviors. We tested users who would enter each digit very slowly, all the way up to users who had the
call tree memorized and would dial four of five digits in rapid succession. These two parameters help
compensate for both ends of the spectrum. For your users to successfully use the voice mail functions, it
is important to understand the user base and adjust the timeout value and the retry options. Two other
useful functions are the DialByNamePrimary and DialByNameSecondary functions. Dial by name is
set by default to search by last name when the user utilizes the dialing features within UM. This
parameter has three values that allow the user to search by first name, last name, or SMTP address. The
dial by name secondary allows the UM admin to create a secondary look key based off one of the three
mentioned values.

 Users can receive informational announcements when they dial into UM. This can be useful for
disseminating information to users about office hours, weather conditions, or other reminders. These
files need to be in .wav file format. To enable this feature two parameters need to be passed to the
Set-UMDialPlan cmdlet. The first enables the informational announcements and the second is
the location of the file that is to be set as the announcement. So to enable a WAV file called Summer
Hours.wav , located in D:\announcements , the command would look as follows:
Set-UMDialPlan -InfoAnnouncementEnabled true -InfoAnnouncementFilename
D:\announcements\SummerHours.wav . The true could also be replaced with $Uninterruptible
if you do not want users to escape out of the message.

c10.indd 279c10.indd 279 12/17/07 3:45:31 PM12/17/07 3:45:31 PM

Part II: Working with Server Roles

280

 To complement informational announcements, the UM administrator can also modify the welcome
greeting or completely turn it off. The informational announcement plays when a user calls into the UM
system and it can be modified to include corporate branding with the VM system. Implementation and the
requirements are similar to the informational announcements. Two parameters are passed to the dial plan:
one to enable the greeting and the other to specify the location of the greeting WAV file. The following
replaces the default greeting with the corporate greeting. The WAV file is located in D:\greetings
. Set-UMDialPlan -WelcomeGreetingEnabled $true -WelcomeGreetingFilename
“D:\Greetings\Corporate Greeting.wav” . Remember to quote any input that has spaces in
it or the command will fail.

 At least once, everyone has enjoyed a voice mail from someone who accidentally called and left a voice
mail while walking around in the mall or with their phone in their pocket. To keep these errant calls
from going on forever, or until the server runs out of space to record the voice mail, UM has included
a MaxRecordingDuration . By default it is quite generous at 20 minutes; however this can be set to a
more conservative value if needed. In the event that someone were to accidentally dial a UM - enabled
extension and attempt to leave a voice mail with no audio, the UM server sends a disconnect command
after 5 seconds of no audio input. This is advantageous and helps reduce the number of calls leaving
accidental voice mail. If for some reason the UM administrator wanted to change the idle timeout value,
he would use the -RecordingIdleTimeout parameter with a value that better suited his needs. There
is one other option that is applicable to durations. Maximum call duration sets the amount of time in
minutes that a UM user can have an active session before being disconnected. This setting is for all
activity in a single call. Using UM to read all the email that you missed while taking the summer off to
go backpacking across Europe may require multiple calls because this feature terminates a call once it
has reached the maximum call time. By default this is set to 30 minutes, which should be enough time
for all but the most aggressive UM users to have their email, voice mail, and calendaring notices read to
them. However, if the need arises to modify the timeout value, the MaxCallDuration can be invoked.
A word of caution: modifying this value affects port availability on the IP gateway appliance. If users
stay connected longer, there may be times where there are not enough lines available to accept new
requests. Changing this value should be done only after analyzing the impact this will have to
availability.

 In all phone systems, whether public or private, there has been one ambiguous person who handles all
manual intervention of call screening, forwarding, and transferring of calls: the operator. This chapter
would be incomplete and users everywhere would be remiss if Unified Messaging did not include
operator support. Alas, there is an option within the Set-UMDialPlan that sets the operator extension,
so you do not lose your connection to the master of call transferring. By using Set-UMDialPlan
OperatorExtension , the operator will still be available as an option with the call tree. This option is
also necessary in order to allow transferring to the operator.

 For UM administrators who will be dealing with Unified Messaging deployments that span across
multiple languages, Unified Messaging can be configured with language packs that allow users to
interact with the system in their native language. At the time of this writing, Microsoft Exchange 2007
Unified Messaging supports the following languages:

c10.indd 280c10.indd 280 12/17/07 3:45:32 PM12/17/07 3:45:32 PM

Chapter 10: Unifi ed Messaging

281

Language -DefaultLanguage Value

Dutch nl-NL

English (Australia) en-AU

English (Great Britain) en-GB

English (United States) en-US

French fr-FR

French (Canadian) fr-CA

German de-DE

Italian it-IT

Japanese ja-JP

Korean ko-KR

Mandarin (People’s Republic of China) zh-CN

Mandarin (Taiwan) zh-TW

Portuguese (Brazil) pt-BR

Spanish es-ES

Spanish (Mexico) es-US
Swedish sv-SE

 If the language pack is not installed, DefaultLanguage causes an error.

 For an updated list, refer to the following Microsoft TechNet site: http://technet.microsoft.com/
en-us/exchange/bb330845.aspx .

 After exploring some of the additional features that the UM dial plan contains, some examples of a
Set-UMDialPlan may look like this:

Get-UMDialPlan | Set-UMDialPlan -FaxEnabled $true -MaxRecordingDuration 5 -
ContactScope GlobalAddressList -InternationalAccessCode 011 -OutsideLineAccessCode 9
Set-UMDialPlan -Identity UM901 -InfoAnnouncementEnabled $true -
InfoAnnouncementFilename “D:\Info files\Company news.wav” -Language en-GB

 Setting the UM IP Gateway
 When we created a new UM IP Gateway earlier using the New-UMIPGateway cmdlet, it was a minimal
configuration. A few additional parameters within the Set-UMIPGateway allow for increased
functionality as well as a simulation mode to assist in UM testing. We briefly discuss the options within
the Set-UMIPGateway here.

c10.indd 281c10.indd 281 12/17/07 3:45:32 PM12/17/07 3:45:32 PM

Part II: Working with Server Roles

282

 In the course of piloting a UM rollout, there may be instances where there is a split voice mail system
within the infrastructure. This may include the legacy voice mail systems as well as the pilot rollout of
Unified Messaging. To accomplish a pilot integration or a full system cut over, there may be one or more
SIP gateways deployed. Each gateway appliance is defined by a unique name that in subsequent terms is
referred to as the identity, as well as the IP address of the appliance. There also may be times when the IP
address of the gateway changes and the UM server needs to be updated to show the new IP of the
appliance. To accomplish this, use the Set-UMIPGateway cmdlet. Remember that the identity
parameter is required in all of these set commands. When the UM IP gateway is created, an IP address is
required for the SIP conversation to take place. If the IP address of the appliance changes, you use the
address parameter to define the new IP address of the IP gateway.

 Another feature is the use of outbound calls from the IP gateway. These are typically IP to PBX calls.
This can be used for a Unified Messaging and OCS VoIP deployment, or to utilize the “ play on phone ”
feature that is available for voice mails from within Outlook 2007. If this setting is disabled, the play
on feature doesn ’ t work, which eliminates the “ play on phone ” feature from within Outlook 2007, but
still allows for call transfers from within UM. To enable or disable this feature, use the
OutCallsAllowed and set the Boolean value to $true or $false .

 By default the port that SIP conversations originate from on the IP gateway is 5060. If there is a need to
run this on an off - number port, the IP gateway can be modified via use of the Port parameter. This
parameter takes any port in the IP stack. Remember that using an off - numbered port in hopes that it will
trick a hacker is not a good security practice. Security by obscurity will not defeat a dedicated hacker. If
increased security is the end result, deploy an encrypted solution and configure the UM dial plan to use
 VOIPSecurity $true . The status parameter allows the UM admin to set the operation of the IP
gateway to one of three values: Enabled, Disabled, or NoNewCalls . Setting this parameter to a
nonenabled status can be useful when maintenance is necessary on the IP gateway.

 The last feature for setting the IP gateway pertains to a simulation mode. This mode is either set to
Simulator $true or Simulator $false and is used to test connectivity and functionality to the
UM server. An IP gateway is not necessary if a pilot user is using the Unified Messaging test phone. The
test phone is an application that can be installed on a PC and configured to connect to the UM server to
test the unified messaging components without the use of an IP gateway. This may be of particular
benefit for test labs, or Exchange administrators looking to provide a proof of concept on the increased
functionality of Exchange Server 2007.

 Setting the UM Mailbox Policy
 When the original UM mailbox policy was created, only the two required parameters (the name of the
policy and the associated dial plan) were provided. Because that example was simplistic in nature, we
will build off of it and describe some of the other parameters that you can use to provide customization
to UM users.

 Any configuration changes that are issued with the Set-UMMailboxPolicy cmdlet require that the
Identity parameter be specified. Although the Identity parameter is positional and providing the
value is sufficient, while getting used to PowerShell it is recommended to include it.

 The first modifiable option is to allow common patterns (AllowCommonPatterns) within the PIN. This
parameter allows for a tradeoff between ease of use for the end user and a best practice for the security
of passwords. When modifying this parameter a thorough analysis of your company ’ s security policies

c10.indd 282c10.indd 282 12/17/07 3:45:33 PM12/17/07 3:45:33 PM

Chapter 10: Unifi ed Messaging

283

should be performed to keep the users ’ PINs acceptable within your security policy. Remember, the PIN
is a password to the voice mail of a user. If someone guesses a trivial PIN for a member of executive
management or another employee with access to sensitive information, he would be able to read and
respond to that user ’ s email, voice mail, and calendar. Consider the ramifications of this setting before
actually setting it.

 Access to dialing another user ’ s extension or to dial outside the country can be controlled on a
user - by - user basis also. The two parameters that control this are AllowDialPlanSubscribers and
AllowExtensions . Allowing the dial plan subscribers lets users dial an extension within the same
dial plan without any of the prefixing. This would typically be used for interoffice communication and is
set to $true by default. Setting AllowExtensions provides the ability for users to dial the number of
digits in the extension that was set in the New-UMDialPlan cmdlet.

 Unified Messaging sends emails that fall into the following categories: missed calls, voice mails, fax text,
UM enabling, and for PIN resets. The following paragraphs describe how to modify the appearance of
the text that is contained within the body of the emails.

 When a UM - enabled user misses a call, an email will be sent to that user. By default the text specifies that
you missed a call and then displays the inbound number. Depending on how the PBX is configured that
the IP gateway is connected to, there may be times where the inbound number is just a single digit or a
two - digit code. This is not an error in the UM logic, rather in the way the PBX is passing call data to the
UM server. There are two ways to change this behavior from the UM server ’ s perspective. The first is to
create an entry in the GAL that maps the two - digit number to an identity. For example, if you receive
missed calls or emails from 42, you can create a contact that maps 42 to Exchange Unified Messaging
Missed Call Assistant. It is more aesthetically pleasing than a missed call by 42. The second option is
to turn off missed call notifications. Not many phone systems provide this functionality now, so the
loss of functionality may be transparent to the end user. To accomplish this use the
 AllowMissedCallNotifications and set the value to $false .

 Changing the fax text produces the same result and has the same limitation as the missed call
notification. The text is limited to 512 bytes. To change the text use the FaxMessageText and enclose the
information that you want displayed in the email in quotes. The voice mail text is similar to the previous
two parameters and can be changed with the VoiceMailText parameter.

 When users have their account UM enabled or re - enabled, an email is sent from Microsoft Exchange to
the user. The email body will contain the basic “ Welcome to Exchange Unified Messaging ” with the
extension and the PIN. There is an opportunity to add value especially in this email by directing users
how to log in to the UM system via their phone and change their PIN. This will assist in leveraging the
automation of the UM - generated email and help reduce service desk calls. At this point it may also be
advantageous to put into the email how users can reset their PIN. There are three correct ways for end
users to change their PIN. Users can use the UM system to change their PIN if they remember their old
PIN. If the users have access to Microsoft Office Outlook 2007 they can change their PIN from within the
Tools Options Voice Mail menu. The last way to perform a PIN reset request is to log in to OWA,
click Options, and then click Voice Mail. Within the page there is a link to reset the PIN.

 The last type of email that users will get from UM is the PIN reset email. Content from this email will
contain the user ’ s new PIN. To modify the text use the ResetPINText and add in any additional
information that may be needed for the end users in order assist them in logging in with their new PIN.

c10.indd 283c10.indd 283 12/17/07 3:45:33 PM12/17/07 3:45:33 PM

Part II: Working with Server Roles

284

 Five PIN functions are contained within the Set-UMMailboxPolicy cmdlet. The reset PIN text has
already been discussed, which leaves PIN length, PIN history, PIN lifetime, and logon failures before
PIN reset. PIN length refers to the number of digits the users will have to enter into the phone system
when they attempt to use UM. The range for the MinPINLength is from 4 to 24 with 6 being the default
value. PINHistoryCount sets the value for the number of previous PINs to retain before the PIN can be
used again. The default value is 5 but can range from 1 to 20. Think of this setting as being similar to the
enforce password history value within password policies on the domain. The PINLifetime parameter is
how long the issued PIN is good for. By default the value is 60, but can be set from 1 to 999. To prevent a
user ’ s password from ever expiring, pass the PINLifetime parameter with the unlimited value.
During the pilot phase of a UM implementation, there may be times when correctly entering the PIN
sounds like an easy task, but in all reality it is not. Timing issues between the user input and the timeout
value, latency between the IP gateway and the UM server, or DTMF issues can prevent a user from
successfully logging in to the UM system. For users to be able to gain access to the UM system, a reset
PIN after too many failures can be configured. By default this value is set to 5 and can be set to 999 to
disable automatic reset of users ’ PINs. To configure this setting, use the
LogonFailuresBeforePINReset to set a value between 0 to 999.

 One other feature that can be set in the UM mailbox policy pertains to the security of the user. After too
many unsuccessful logon attempts, the UM portion of a user ’ s account can be locked out. By default, this
is set to 15 , which will allow users to have multiple chances to access their account. If the default value is
too relaxed, you can modify it with the MaxLogonAttempts . The value range for this is 1 to 999. If you
are planning on using the PIN reset email, set the maximum logon attempts to a value higher than that
of the PIN reset email, otherwise the account will become locked out before the reset is generated.

 The last feature to set on the mailbox policy is the maximum greeting duration. By default it is set to 5
minutes, but can range from 1 to 10. A 5 - minute greeting for a user ’ s mailbox may be excessive, and can
be corrected with the MaxGreetingDuration parameter.

 To take some of the new parameters and put them into action, the following are applied to the mailbox
policy:

Get-UMMailboxPolicy | Set-UMMailboxPolicy -AllowCommonPatterns $true -
FaxMessageText “Unified Messaging has a fax for you.” -LogonFailuresBeforePINReset
5 -MaxGreetingDuration 1 -MinPINLength 4 -PINHistoryCount 12 -PINLifetime 30
Get-UMMailboxPolicy | Set-UMMailboxPolicy -AllowCommonPatterns $false -
AllowMissedCallNotifications $false -LogonFailuresBeforePINReset 1-AllowExtensions
$false

 Retrieving UM Information Using
the Get - UM Cmdlets

 Thus far, we have been using PowerShell to set properties and values. It therefore would be necessary to
see, or retrieve, the data that has been set. In order to do this, Exchange Server 2007 has shipped with a
series of Get-UM* cmdlets. These wonderful cmdlets allow for the retrieval of data as well as using the
data as pipelined input into other cmdlets. This section deals with the following cmdlets:

❑ Get-UMAutoAttendant

❑ Get-UMDialPlan

c10.indd 284c10.indd 284 12/17/07 3:45:33 PM12/17/07 3:45:33 PM

Chapter 10: Unifi ed Messaging

285

❑ Get-UMHuntGroup

❑ Get-UMIPGateway

❑ Get-UMServer

❑ Get-UMVirtualDirectory

❑ Get-UMMailbox

❑ Get-UMMailboxPIN

❑ Get-UMMailboxPolicy

 When looking at the Get-UM cmdlets, they can be broken down into two categories, SIP/Server facing
and user facing. The Sip/Server - facing cmdlets allow for the retrieval of the UMIPGateway, or a
UMDialPlan name. The user - facing cmdlets deal with UMMailboxPolicies or a UMMailboxPIN
number. First we discuss the SIP - facing Get-UM cmdlets.

 During day - to - day operations, the UM administrator may want to see what the current call volume
looks like on a particular server, dial plan, or gateway. Get-UMActiveCalls allows that. The syntax for
 Get-UMActive calls is as follows:

Get-UMActiveCalls [-DomainController < Fqdn >] [-Server < ServerIdParameter >]
[< CommonParameters >]
Get-UMActiveCalls -InstanceServer < UMServer > [-DomainController < Fqdn >]
[< CommonParameters >]
Get-UMActiveCalls -DialPlan < UMDialPlanIdParameter > [-DomainController < Fqdn >]
[< CommonParameters >]
Get-UMActiveCalls -IPGateway < UMIPGatewayIdParameter > [-DomainController < Fqdn >]
[< CommonParameters >]

 If the cmdlet is run without any parameters, it will return statistics for the local server. However, it does
allow for scoping down to the dial plan level using the DialPlan parameter, or the IP gateway using the
 IPGateway parameter. To pull statistics for a remote UM server, the InstanceServer parameter would
be invoked along with the name of the remote UM server.

 To retrieve settings for UMAutoAttendants , use Get-UMAutoAttendant . If the Identity parameter is
not used it will display all UMAutoAttendants in Active Directory. Remember to see all information
returned from a Get- cmdlet , use |fl .

 Get-UMDialPlan has already been used to confirm some of the settings that were created earlier in the
chapter. It has one optional parameter, Identity . If the Identity parameter is not specified, it will
display information for all UMDialPlans in Active Directory.

 Get-UMHuntGroup is used to display any hunt group that has been created. Earlier in the chapter,
during the New-UMIPGateway creation, the hunt group used for this scenario was automatically created.
To see the settings of a particular UMHuntGroup , include the Identity parameter.

 Get-UMIPGateway is used to retrieve any UMIPGateways in Active Directory. This cmdlet also includes
the option of displaying any UMIPGateways that were created to operate in a simulator mode. To view
simulated UMPgateways, use the IncludeSimulator parameter.

c10.indd 285c10.indd 285 12/17/07 3:45:34 PM12/17/07 3:45:34 PM

Part II: Working with Server Roles

286

 Get-UMServer is used to retrieve information about UMServers . If the Identity parameter is not
used, it will display all UMServers . This cmdlet will also show what UMDialPlans the UMServer is
associated with.

 Get-UMVirtualDirectory displays the current configuration of the UM virtual directory on all CAS
servers, unless the Server parameter is invoked. Expanding the information using |fl will allow you to
see the internal URL, external URL, as well as the authentication methods set. For more information
about UMVirtualDirectory , see Chapter 6 .

 The next three cmdlets are user - facing. They deal with retrieving information that is user - specific.

 Get-UMMailbox by default will list all users and whether or not they are UM enabled. This is a very
flexible cmdlet that can be manipulated to display a number of different values. By default every user is
listed. In larger environments that is painful. To look for a specific user, specify the Identity parameter.
As input it will accept the ADObjectID, GUID, DN, domain\account, UPN, LegacyExchangeDN, SMTP
address, or the alias. Using the Identity parameter will narrow down the search to a specific user. To
change the scope of the search and to see just one OU, the OrganizationalUnit parameter can be used.
It accepts the canonical name for the OU. To see just the UM - enabled users, run the following cmdlet:

Get-UMMailbox | where {$_.UMEnabled -eq $true}

 Get-UMMailboxPIN is useful when working with users to see if they have locked out the UM portion
of their account. If the Identity parameter is not used, it will display the PIN properties, not the
actual PIN, of all UM users. If a user is specified, her lockout status as well as her PIN is shown. As input
it will accept the ADObjectID, GUID, DN, domain\account, UPN, LegacyExchangeDN, SMTP address,
or the alias.

 The last user - facing UM cmdlet is Get-UMMailboxPolicy . This cmdlet will show all UM mailbox
policies present. To look at a specific policy, use the Identity parameter. To see all of the values in the
policy append | fl to the end of the cmdlet.

 UM User Management
 In the day - to - day support and administration of a UM environment, there will be the need to field
requests from users to unlock accounts, reset PINs, and to disable and enable UM accounts. To perform
these actions, there are a few additional UM cmdlets that can increase the efficiency of performing these
actions. This section deals with the following cmdlets:

❑ Set-UMMailboxPIN

❑ Disable-UMMailbox

❑ Enable-UMMailbox

 When a user incorrectly logs in too many times his account will become locked out. To date, there is no
automatic unlocking interval and manual administrator intervention is required. The two ways to
unlock the UM portion of the account are to use the GUI or the Set-UMMailboxPIN cmdlet. Using the
cmdlet offers a greater degree of usability because it can be collaborated into a suite of cmdlets that could

c10.indd 286c10.indd 286 12/17/07 3:45:34 PM12/17/07 3:45:34 PM

Chapter 10: Unifi ed Messaging

287

have a console application or a web - based front end created for them and allows service - desk personnel
to perform user management functions. The other bonus to using cmdlets is that they can be used in
addition to other personal information to create an employee self - service portal. To unlock the account
the Set-UMMailboxPIN must have the Identity parameter. This parameter takes any of the
following:

❑ ADObjectID: The syntax of the AD object is domain\OU\name . So for example, you might have
this: exchangeexchange.com\sales\john doe

❑ GUID Ex: (43cbd6ff - ac3b - 4a8f - 8906 - f14eb33a0b31) — A GUID is a globally unique identifier.
Think of it as a serial number or a MAC address. Two GUIDs cannot be the same in an Active
Directory forest.

❑ DN: The distinguished name can be the full name. The distinguished name is the LDAP listing
of the user. It contains the user ’ s full name, the organizational unit (OU) that he resides in, as
well as the domain name. The following is an example of a user whose full name is John Doe,
resides in the Sales OU, and is in the domain exchangeexchange.com: CN=John
Doe,OU=Sales,DC=exchangeexchange,DC=com.

❑ Domain\Account – User account: Typically this is the user ’ s logon name that is used when the
user logs in to the domain. Following a naming convention of the first initial of the first name
and the complete last name, John Doe from sales would have the following logon name: jdoe .

❑ UPN: The UPN, or user principal name, is default the user ’ s logon name @ domain. So for John
Doe, it would be jdoe@exchangeexchange.com . The UPN, like the domain name and the
GUID, must be unique to the domain.

❑ LegacyExchangeDN: Legacy DN is included for backward compatibility for previous versions
of Exchange. /o=ExchangeExchange/ou=Exchange Administrative Group
(FYDIBOHF23SPDLT)/cn=Configuration/cn=Servers/cn=MB902

❑ SmtpAddress: This is the address that the user uses to send/receive mail. For example:
John.Doe@exchangeexchange.com .

❑ Alias: This is usually the short name of a user.

 If the PIN (PIN) is not specified, a new PIN will be automatically created and emailed to the user. The
PIN Expired (PINExpired) is also not required and will assume that the PIN should be treated as an
expired PIN and request the user to change it upon first successful login. When a PIN reset is performed
with the Set-UMMailboxPIN , unless explicitly specified with the LockedOut $true parameter, the
account will automatically become unlocked.

 When a user is disabled in UM he will no longer be able to access any of the UM features and UM will
no longer accept voice mail or faxes for the user. To disable a UM user, use the Disable-UMMailbox
with the Identity parameter. There is one other parameter worth noting for this cmdlet. If you want to
keep the user ’ s configuration, extension, mailbox policy, and so on, then also add KeepProperties
$true when disabling the user. This retains the user settings and when the user is enabled again via the
 Enable-UMMailbox cmdlet, the user information will not need to be re - entered.

c10.indd 287c10.indd 287 12/17/07 3:45:35 PM12/17/07 3:45:35 PM

Part II: Working with Server Roles

288

 If all UM - enabled users in sales needed to have their UM settings disabled, the following will disable all
users in sales and retain their properties for activation at a later date:

Get-UMMailbox | where {$_.identity -match “Sales”} | Disable-UMMailbox -
KeepProperties $true -Confirm:$false

 When introducing UM into an existing environment, there will already be an established user base.
These users will not be able to automatically start using UM. Their accounts must first be configured and
enabled for UM. In order to do that, the Enable-UMMailbox is used. This cmdlet has only two required
parameters: the identity of the user that will be activated and the UMMailboxPolicy . However, for the
sake of this writing, it is best practice to include the Extensions parameter. For the identity of the user,
it will accept the ADObjectID, GUID, DN, domain\account, UPN, LegacyExchangeDN, SMTP address,
or the alias.

 The Extensions, PIN, PINExpired , and UMMailboxPolicy have been set to allow users to
immediately access their UM mailboxes:

Enable-UMMailbox -Identity john.doe@exchangeexchange.com -Extensions 4242 -PIN
458236-PINExpired $false -UMMailboxPolicy UMpolicy1

 AutoAttendants
 Unified Messaging allows for the creation of AutoAttendants (AA). The creation of an AA can allow for
internal or external users to dial a single number and be directed to various departments, and allow
for different greetings based on business hours and other factors. The following paragraphs focus on
creating a new UM AutoAttendant and adding features to the newly created AutoAttendant. This
section deals with the following UM AutoAttendant cmdlets:

❑ New-UMAutoAttendant

❑ Enable-UMAutoAttendant

❑ Set-UMAutoAttendant

 To create a new AutoAttendant, the New-UMAutoAttendant cmdlet is used. The New -
 UMAutoAttendany has the following syntax:

New-UMAutoAttendant -Name < String > -UMDialPlan < UMDialPlanIdParameter > [-Confirm
[< SwitchParameter >]] [-DomainController < Fqdn >] [-DTMFFallbackAutoAttendant
 < UMAutoAttendantIdParameter >] [-PilotIdentifierList < MultiValuedProperty >] [-
SpeechEnabled < $true | $false >] [-Status < Enabled | Disabled >] [-TemplateInstance
 < PSObject >] [-WhatIf [< SwitchParameter >]] [< CommonParameters >]

 This cmdlet requires that a unique name for the AutoAttendant from within the forest be used, which is
set by the Name parameter. The AA must be associated with a dial plan too. These are the only two
required parameters to create an AutoAttendant:

New-UMAutoAttendant -Name PilotAA -UMDialPlan test.

c10.indd 288c10.indd 288 12/17/07 3:45:35 PM12/17/07 3:45:35 PM

Chapter 10: Unifi ed Messaging

289

 Now this newly created dial plan will not work until it is enabled. It can either be set during the
New-UMAutoAttendant creation by setting Status to enabled or enabled by using the
 Enable-UMAutoAttendant:

Enable-UMAutoAttendant -Identity PilotAA

 The AutoAttendant has these main feature groups: business hours parameters, after hour parameters,
and dial plan related parameters. The first two have all new parameters, and the dial plan has several
features that are also listed in the UM dial plan.

 Within the business hours parameters, the options available can be broken down further into four
categories: custom prompts, key mapping, hours, and operator. If custom prompts are needed they will
have to be in .wav file format. This is a requirement for all audio files within UM. Two parameters are
necessary to enable custom prompts: BusinessHoursMainMenuCustomPromptEnabled and
BusinessHoursMainMenuCustomPromptFilename . The first parameter expects a Boolean value. The
second parameter is the location on the server where the .wav file resides. Once these two parameters
are used with the Set-UMAutoAttendant cmdlet, during business hours, users will hear the new
prompts that were just deployed.

 To set the business hours key mapping, the map must first be created with the BusinessHoursKeyMapping
parameter and then enabled with the BusinessHoursKeyMappingEnabled parameter. The business hours
key mapping parameter is a multi - valued property that has three different ways to use it:

❑ “ < key > , < name > , < extension > ,,[promptFileName],[asrPhrase]”

❑ “ < key > , < name > ,, < autoAttendantName > ,[promptFileName],[asrPhrase]”

❑ “ < key > , < name > ,,, < promptFileName > ,[asrPhrase]”

 The key value is a 1 – 9 number. This value is what the user presses when presented with this option. Zero
is not used because it is reserved for the operator. Name is used for the logical grouping of the key. For
example: “ For sales press 1. ” The extension is the actual number for the user or the hunt group that will
be dialed when the user presses the key. Prompt filename is the recorded .wav file for this key/name/
extension set, and is optional in the first two, but required in the third. An ASR phrase is the automated
speech recognition that a user can speak in lieu of pressing they corresponding key. To use the speech
recognition feature, SpeechEnabled needs to be set to $true . Now that the key mapping has been
generated, it must be enabled. To accomplish this, add the BusinessHoursKeyMappingEnabled $true
to the Set-UMAutoAttendant cmdlet.

 Now that some custom prompts have been added, and a key map has been generated, the next step is to
determine the business hours functions. In this section you set the business hours, set the filename for
the business greeting, and enable the greeting for this AutoAttendant. The business hours operator
function is also covered.

 The business hours schedule determines the day and time that all of the functions that have been set thus
far will be used. The format of the values for BusinessHoursSchedule can be one of the following:
 “ day.timeopen AM/PM - day.timeclose AM/PM ” or “ day.open - close ” . This parameter also accepts the time in
 “ military time ” and can span across days. To have 24x7 business hours, the parameter and value would

c10.indd 289c10.indd 289 12/17/07 3:45:35 PM12/17/07 3:45:35 PM

Part II: Working with Server Roles

290

look like this: -BusinessHoursSchedule “mon.12:00 AM-sun.11:59 PM” or “mon.00:00-
sun.23:59” . If your office is open during the week from 9 AM to 5 PM, the parameter and value would
be as follows: Set-AutoAttendnat -Identity PilotAA -BusinessHoursSchedule -mon.0900-
mon.1700, tue.0900-tue.1700, wed.0900-1700,thu.9:00 AM-7:00 PM,fri.09:00 AM-05:00
PM” . Mixing AM/PM and 24 - hour time within the same day will not work and will result in an error. For
ease of management and to be aesthetically pleasing, simplify the business hours to use one format.

 Like all greetings and prompts for UM, the business hours greeting can be modified to play a custom
WAV file. There are two parameters needed to use the business hours greeting. The first sets the WAV
file location, BusinessHoursWelcomeGreetingFilename , and the second enables/disables it,
 BusinessHoursWelcomeGreetingEnabled . The latter is a true/false Boolean value.

 The last order of business for business hours is to decide whether to allow call transfer to
the operator for service. By default this value is set to false. To enable this feature use
BusinessHoursTransferToOperatorEnabled to set the value to $true. Some AutoAttendants
may not want users to escape the call to the operator and keep them confined to the key mapping that
was previously created. This setting only applies to the AutoAttendant, and not to the UM mailbox
policy.

 The after hours section uses the same of parameters that Set-UMAutoAttendant uses, but instead of all
the parameters being prefaced with BusinessHours , they are replaced with AfterHours . The exact
parameters are listed here:

❑ AfterHoursKeyMapping

❑ AfterHoursKeyMappingEnabled

❑ AfterHoursMainMenuCustomPromptEnabled

❑ AfterHoursTransferToOperatorEnabled

❑ AfterHoursWelcomeGreetingEnabled

❑ AfterHoursWelcomeGreetingFilename

 Many of the features that are in the dial plan are also available for the AutoAttendant. Domestic and
international groups are allowed. AutoAttendant users can be configured to call extensions, dial by
name, and have informational and welcome greetings. There is one other parameter that is of particular
interest. A holiday schedule can be set that will use a custom WAV file for each individual set holiday.
HolidaySchedule has three values that are required and one optional value. To enable a special
holiday for the 4th of July, the command would look like this:

Set-UMAutoAttendant -Identity -HolidaySchedule “name of holiday, wav file, start
day, [end day]”
Set-UMAutoAttendant -Identity PilotAA -HolidaySchedule “4th of July, 4th.wav,
7/4/2007”

c10.indd 290c10.indd 290 12/17/07 3:45:36 PM12/17/07 3:45:36 PM

Chapter 10: Unifi ed Messaging

291

 Removing and Disabling UM Features
 When a server or a UM component is no longer needed, a simple removal of the UM role from the UM
server is not enough. The data is still present in Active Directory and can be assigned. The Exchange
team has provided a series of disable and remove cmdlets that allow the Exchange administrator to
disable functions or to remove them completely. This section of the chapter deals with clean and removal
of the AutoAttendant, IP gateway, dial plans, hunt groups, UM - specific mailbox policies, and even the
UM server itself. This section discusses the following cmdlets that are used to disable or remove UM
properties:

❑ Disable-UMServer

❑ Copy-UMCustomPrompt

❑ Disable-UMAutoAttendant

❑ Disable-UMIPGateway

❑ Enable-UMIPGateway

❑ Remove-UMAutoAttendant

❑ Remove-UMDialPlan

❑ Remove-UMHuntGroup

❑ Remove-UMIPGateway

❑ Remove-UMMailboxPolicy

❑ Remove-UMVirtualDirectory

 Disabling a UM resource does not remove the object from Active Directory; it prevents assignment of
properties to the UM object and further processing of calls. This functionality is useful for temporarily
suspending access to a feature. During the technology life cycle, a server will reach a period where it will
be retired and replaced with a newer model. During that transitional period, one of the systems may
need to be online but not necessarily taking production traffic. As the new UM server comes online, via
the Enable-UMServer cmdlet, the old server will be disabled via the Disable-UMServer cmdlet. The
 Disable-UMServer only requires the name of the server to disable. Because the Identity parameter is
positional, the Identity itself is not required, just the value. If a confirmation before disable is required,
the Confirm parameter can be used. However, if an immediate termination of all calls is necessary,
using the Immediate parameter set to $true will drop all calls.

 The first UM server contains a share that contains all of the custom WAV files that are created for
custom prompts. Before the first UM server in the organization is retired, the custom prompts will
need to be moved to a different UM server and then have their publishing point updated. Using
the Copy-UMCustomPrompt will copy the files to a new location and update the publishing point.
Copy-UMCustomPrompt requires either a source path location, specified by the Path parameter, or the
 TargetPath designates which WAV file to copy from a publishing point and UMAutoAttendant ,
or the UMDialPlan . At the next UM update interval, the UM servers will copy the file locally.

c10.indd 291c10.indd 291 12/17/07 3:45:36 PM12/17/07 3:45:36 PM

Part II: Working with Server Roles

292

 Disabling an AutoAttendant prevents further use of the attendant, but keeps the setting stored in Active
Directory. Being able to do this is useful when testing attendant features. To disable an AutoAttendant,
all that is needed is the AA ’ s identity. The cmdlet is Disable-UMAutoAttendant -Identity Test .

 During the life cycle of any product, there are times where devices will need to have firmware or
software patches applied. UM IP gateways are no exception. It may become necessary to temporarily
remove the device from service to perform maintenance activities. The cmdlet to disable the UM IP
gateway is Disable-UMIPGateway . The identity of the UM IP gateway is required. One other parameter
for this command is the Immediate parameter. If this parameter is set to true, the UM server will drop
all conversations immediately with the affected UM IP gateway. The UM IP gateway that was created
earlier in the chapter was given the name test. To immediately end all calls to test the cmdlet would
look like this:

Disable-UMIPGateway test -Immediate $true

 When maintenance is complete on these devices they can be returned to service using the Enable set of
cmdlets. Enabling the UM server is easy. All that is required is the name of the UM server. The cmdlet is
 Enable-UMServer . Once the server is enabled it will begin processing any available calls that it has in
the associated UM dial plan. The UM IP gateway that was disabled to have some patches applied can
now start taking calls again. The Enable-UMIPGateway is similar to its disable counterpart. All that is
required is the identity of UM IP gateway. To enable our test gateway the cmdlet would look like this:

Enable-UMIPGateway -Identity test

 When devices are no longer used or functionality no longer needed, they can be removed via the
 Remove-* set of cmdlets. These cmdlets will remove the associated data from Active Directory. At this
time there is no undo function for a remove cmdlet. As a result, care should be taken when removing any
UM object. With enable and disable the UM administrator had the ability to set the status of the UM
server. It would seem logical that the UM server, then, would be able to be disabled using a similar
cmdlet. This is not the case. Using step.com /m:uninstall /r:u is the only supported way to
remove the UM server from the Exchange topology.

 There are six Remove cmdlets. All require the Identity value as the only required value. Though this
may seem simplistic in nature, there is a certain amount of preprocessing that must occur. The
 UMDialPlan cannot be removed if there are any UMIPGateway or UMMailbox policies associated with it.
Any UMMailboxPolicy that the UM administrator wants to delete must have no users associated with
the UMMailboxPolicy. So though these cmdlets may seem easy to use, the successful implementation of
them depends largely on how well the pre - cleanup and disassociation of previous objects was
performed. The six cmdlets to remove UM functions are as follows:

❑ Remove-UMAutoAttendant : Deletes the AA. No new calls to the configured extension will be
processed.

❑ Remove-UMDialPlan : Removes the AA only if there is no associated UMIPGateway or
 UMMailboxPolicy .

❑ Remove-UMHuntGroup : Removes the UMHuntGroup . If all UMHuntGroups are removed from the
associated UMIPGateway , no call processing will be performed.

❑ Remove-UMIPGateway : Removes the UMIPGateway . No further SIP conversations will be
performed with this device.

c10.indd 292c10.indd 292 12/17/07 3:45:36 PM12/17/07 3:45:36 PM

Chapter 10: Unifi ed Messaging

293

❑ Remove-UMMailboxPolicy : Removes the UMMailboxPolicy , only if there are no UM user
mailboxes using the UMMailboxPolicy .

❑ Remove-UMVirtualDirectory : Removes the specified virtual directory. This cmdlet is specific
to CAS servers, not UM servers.

 Summary
 In this chapter the basic configuration of Unified Messaging through the use of PowerShell was
explained. Dial plans, mailbox policies, IP gateways, and AutoAttendants were created using the
New-UM* cmdlets. Once a base configuration was deployed, additional functionality was added through
the use of the Set-UM* cmdlets. All UM settings can be verified through the use of the Get-UM* cmdlets.

 Several important items have been discussed in this chapter. One of the most important items is to have
an understanding of, or the ability to work with, the telco team and their terms. As with most new
undertakings, a solid plan that lists goals, purpose, timeline, and a division of responsibility is crucial for
the success of a new product deployment.

c10.indd 293c10.indd 293 12/17/07 3:45:37 PM12/17/07 3:45:37 PM

c10.indd 294c10.indd 294 12/17/07 3:45:37 PM12/17/07 3:45:37 PM

Part III

Working with
PowerShell in
a Production
Environment

Chapter 11: Exchange Server 2007 Routing

Chapter 12: Working with Continuous Replication

Chapter 13: Single Copy Clusters

Chapter 14: Troubleshooting Exchange Issues

c11.indd 295c11.indd 295 12/17/07 3:52:54 PM12/17/07 3:52:54 PM

c11.indd 296c11.indd 296 12/17/07 3:52:55 PM12/17/07 3:52:55 PM

 Exchange Server
2007 Routing

 Routing determines how a message gets from a source server to its destination server. Routing
decides on the best and least-expensive path a message takes when transferred between Exchange
servers within an organization and to servers in other organizations. In Exchange Server
2000/2003, several components were involved in routing, including Link State, Routing Groups,
Connectors, and Routing Group Masters. Routing Groups were logical groupings of Exchange
servers determined by the administrator. In Exchange Server 2007, because the transport core func-
tionality has changed as noted in Chapter 7 , message routing has also been changed. Rather than
using the Routing Engine found in Exchange 2000/2003, the Categorizer (see “ The Transport
Server Architecture ” in Chapter 7) now has a routing stage that determines the ultimate destina-
tion for a message, selects a route to that destination, and selects and resolves the next hop for that
destination to a server(s) and IP addresses.

Link state was one of the components of routing in Exchange 2000/2003 many Exchange
 administrators were happy to see go away. Although link state had some benefits, managing it in
some cases required a significant overhead. In some large Exchange Server environments, the
orgInfo packet, which holds the routing information for the organization, became quite large
and caused significant network bandwidth utilization during data transfer among servers.
Also, transient network and Active Directory replication problems caused connector oscillations.
Rather than use a logical groups of servers, Exchange Server 2007 takes advantage of Active
 Directory site topology in routing messages within and outside an Exchange organization.

 By the end of this chapter, you will be familiar with message routing and its components in
Exchange Server 2007 as well as the few Exchange Management Shell cmdlets that can be used to
manage message routing. This chapter covers the following topics:

 Routing changes in Exchange

 Basics of Exchange Server 2007 routing

❑

❑

c11.indd 297c11.indd 297 12/17/07 3:52:55 PM12/17/07 3:52:55 PM

Part III: Working with PowerShell in a Production Environment

298

 Routing troubleshooting

 How Active Directory sites affect message routing

 Coexistence with Exchange 2003 and link state considerations

 The following cmdlets are covered in this chapter; some of these were also covered in earlier chapters.

 Get-AdSite

 Get-AdSiteLink

 Get-TransportServer

 Get-SendConnector

 Get-RoutingGroupConnector

 Get-ExchangeServer

 Set-AdSite

 Set-AdSiteLink

 Set-TransportServer

 Set-SendConnector

 Set-RoutingGroupConnector

 New-SendConnector

 New-RoutingGroupConnector

 Remove-SendConnector

 Remove-RoutingGroupConnector

 Routing Changes in Exchange
 Exchange Server 2007 introduces routing changes that take advantage of the existing Active Directory
Service site topology and the underlying network to provide an efficient, deterministic routing topology.
When Exchange Server 2007 coexists with Exchange 2003 or Exchange 2000, you must perform addi-
tional configuration tasks to support message routing between the server versions. The following table
summarizes the changes in message routing between versions of Exchange Server.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

c11.indd 298c11.indd 298 12/17/07 3:52:55 PM12/17/07 3:52:55 PM

Chapter 11: Exchange Server 2007 Routing

299

Exchange Server 2007
Exchange 2000 Server and Exchange
Server 2003

Exchange uses Active Directory sites to deter-
mine an intra-organizational routing topology.
All Exchange Server 2007 computers are associ-
ated with a single routing group for the purposes
of routing to earlier versions of Exchange Server.

Exchange uses routing groups to determine
an intra-organizational routing topology.

Exchange determines the least cost route
between Hub Transport servers by using Active
Directory Service IP site link costs.

Exchange determines the least cost route
between bridgehead servers by using
Routing Group Connector costs.

Exchange uses direct relay to deliver messages
between Hub Transport servers.

Exchange relays through bridgehead
 servers in each routing group in the
routing path.

When Exchange can’t connect, it uses the least cost
routing path information to back off from the des-
tination until a connection can be made to a Hub
Transport server. Messages queue at the reachable
site that is closest to the destination. This behavior
is known as queue at point of failure.

When Exchange can’t connect to the next
hop in a routing path, it tries to reroute the
message over an alternative path.

When a message is being sent to multiple recipi-
ents, Exchange delays message splitting until a
fork in the routing path is reached. This behavior
is known as delayed fan-out.

When a message is being sent to multiple
recipients, message splitting occurs
 immediately after recipient resolution.

Each Hub Transport server queries Active
Directory separately to retrieve the routing
 configuration used to calculate a routing table
and to receive configuration updates.

Exchange uses a link state table to store a
routing table and advertises configuration
changes by using link state updates. The
routing group master retrieves updates
from Active Directory and coordinates the
propagation of link state changes that are
learned by servers in its routing group.

 Basics of Exchange Server 2007 Routing
 One of the most important changes in Exchange Server 2007 is the way basic mail routing is handled.
Unlike in previous versions of Exchange, all mail now must flow through a Hub Transport server role.
For example, in Exchange 2003, two users mailing each other on the same mailbox servers would never
route through a bridgehead. This is an important change because now Exchange can guarantee that
every message can have transport rules applied. One of the most requested features in Exchange is to
apply a disclaimer message to emails. The new transport architecture makes this an easy thing to do.

c11.indd 299c11.indd 299 12/17/07 3:52:56 PM12/17/07 3:52:56 PM

Part III: Working with PowerShell in a Production Environment

300

 Because of this new routing design, every Active Directory site that has a Mailbox server role must also
have a least one Hub Transport server role. It does not mean all Active Directory sites must have a Hub
Transport server role, only sites with Exchange servers in them.

 Active Directory Site - Based Routing
 The removal of routing and administrative groups in Exchange Server 2007 brings tighter integration
with Active Directory. This change can be a source of frustration in organizations where the Exchange
administrators have little interaction with the Directory administrators. Exchange administrators may
feel that the new routing architecture removes a large part of what they controlled in the past. As this
chapter shows, this is not entirely true. Even with Active Directory – based routing, it is possible to
manipulate mail flow if needed. This chapter shows various solutions that enable these scenarios.

 However, most organizations do not require custom routing and Active Directory has established an
effective routing topology for its replication. This provides better return on investment on the company ’ s
investment in Active Directory.

 Active Directory Sites
 An Active Directory site is defined as a collection of well - connected TCP/IP subnets. Well - connected
means reliable and fast connections, generally LAN - type connections. Active Directory sites typically
closely reflect the physical network layout. Sites are the boundaries for Active Directory replication and
they localize directory authentication.

 Active Directory sites are connected by site links. Administrators can configure link cost, availability, and
other properties. Active Directory automatically builds the replication topology based on the site config-
uration. Building the replication topology is the responsibility of the Knowledge Consistency Checker
(KCC). The KCC runs on all domain controllers and on 15 - minute intervals. Specifically, the Inter - Site
Topology Generator (ISTG) on one domain controller evaluates the costs and checks on new or retired
domain controllers. It passes this information to the KCC, which adds or removes connection objects to
create the most efficient replication.

 On an Exchange server, it is the Microsoft Exchange Active Directory Topology service that checks the site
membership of the server against stored configuration information. If the site has changed, the service
updates the server object in Active Directory with the new information. This process occurs when the
 service starts, and is verified every 15 minutes. The Topology service receives its information from
the Net Logon service. Because the Net Logon service polls every 5 minutes, there can be up to a
20-minute latency between the time the site membership changes and the update to the server object.

 The details of configuring Active Directory integration are coming up in the section called “ Working
with Active Directory Sites. ”

 In addition to routing, Exchange uses Active Directory site membership in the following ways:

 The mailbox server to determine which Hub Transport servers are located in the same site.

 To prioritize the list of servers used for public folder referrals.

❑

❑

c11.indd 300c11.indd 300 12/17/07 3:52:56 PM12/17/07 3:52:56 PM

Chapter 11: Exchange Server 2007 Routing

301

 The Unified Messaging server to determine which Hub Transport servers are located in the
same site.

 The Client Access Server determines the site of the user ’ s mailbox server and performs redirec-
tion if needed.

 Route Selection Process
 This section examines how Exchange chooses mail routes. Because of the tight Active Directory integra-
tion and changes in functionality for Exchange Server 2007, this results in many benefits to message rout-
ing including the following:

 Implicit Connectors: Explicitly creating connectors to route mail between Hub Transport
 servers is no longer required.

 Deterministic Routing: Routing is no longer determined by link state. Because of this, it is
 easier for an administrator to understand and predict the path a message takes.

 Direct Connections: Exchange attempts a direct connection to the destination server. It is no
 longer necessary to route the message through a series of hops.

 Exactly how does transport select the route a message will take? Exchange Server 2007 follows some
simple rules:

 The route is selected based on lowest cost only.

 Bifurcation, the process of breaking the message into copies for multiple recipients with different
destinations, is delayed as long as possible.

 It attempts direct delivery unless message flow is controlled by other means, such as a Hub site.

 It relies on IP networks to provide redundancy at the network layer.

 Note that in coexistence with legacy Exchange, there are additional considerations about connector
restrictions. Exchange Server 2007 ignores most restrictions on Routing Group Connectors. These restric-
tions are discussed later in this chapter in the section on coexistence with Exchange 2003.

 The process starts when the user clicks Send; the Microsoft Exchange Mail Submission service notifies an
available Hub Transport server in the same Active Directory site. If the Hub Transport role is co - located
on the mailbox server it will always be chosen. If the Hub Transport role is not co - located, the service
uses a round - robin process to distribute the load. The Hub Transport server that is notified retrieves the
message and begins transport processing.

 The next step is to determine the ultimate destination, which is the end - to - end route. After it is selected, the
route is not recalculated unless there are routing configuration changes. The route selection is calculated
from a set of routing tables that are generated when the Microsoft Exchange Transport service starts. The
information in the routing tables is logged. By default are they are located in C:\Program Files\
Microsoft\Exchange Server\TransportRoles\Logs\Routing .

❑

❑

❑

❑

❑

❑

❑

❑

❑

c11.indd 301c11.indd 301 12/17/07 3:52:56 PM12/17/07 3:52:56 PM

Part III: Working with PowerShell in a Production Environment

302

 Route selection uses an algorithm to match valid connectors against all connectors in the organization
except Routing Connectors, until a single path is left. If no paths are left after running through the pro-
cess, recipients are marked as unreachable or a non - delivery report (NDR) is generated. The algorithm is
based on the following:

 Connector scope

 Target address space

 Connector restrictions

 The path with the lowest cost from source to destination, with the preference to stay within the
Exchange Server 2007 routing group as long as possible

 The path with the least number of hops

 The first site alphanumerically sorted

 The destination address is a combination of delivery type and domain. For example, sending a mail to
 Jeffrey.Rosen@chicago.exchangeexchange.com has a delivery type of SMTP, and a destination
domain exchangeexchange.com . Exchange routing always tries to find the best match, which is
defined by the number of characters that match to the address space configured on the connector. This
concept is shown in the following table. The best match is Chicago.exchangeexchange.com .

❑

❑

❑

❑

❑

❑

Address Space Count

*.exchangeexchange.com 21

Chicago.exchangeexchange.com 28

Exchangeexchange.com -

 During processing, the Hub Transport decides on the message routing. By default, the site link cost asso-
ciated with Active Directory replication is used. This can be overridden by setting explicit Exchange rout-
ing costs. The section “ Working with Active Directory Sites ” explains the cmdlets used for this process.

 After the route is selected, the message is relayed from the source to the next hop.

 Next Hop Selection Process
 The next hop selection process is responsible for getting the message as close to the ultimate destination
as possible. There are different scenarios in which direct delivery may not be possible. For example, an
administrator can force all mail delivery through a particular Active Directory site.

 Part of the next hop selection process is to determine where the message will queue for delivery. There
are five main types of delivery methods. Visually, an administrator can see this in the queue viewer, as
shown in Figure 11 - 1 .

c11.indd 302c11.indd 302 12/17/07 3:52:57 PM12/17/07 3:52:57 PM

Chapter 11: Exchange Server 2007 Routing

303

 These destination types are defined as:

 SmartHost Delivery: This type of delivery is used when the recipients have external addresses.
It routes to a server with a Send Connector that matches the recipient ’ s domain address space.
The message is delivered to the destination SmartHost.

 DNS Delivery: This type of delivery is used when the recipients have external addresses. The
message routes to a server with a Send Connector that matches the recipient ’ s domain address
space. The message is delivered to the destination with a connector that uses DNS delivery.

 Non - SMTP Gateway Delivery: This delivery is used when the recipient ’ s domain address space
matches the address space of a Foreign Connector. The message is routed to the server that has
the Foreign Connector on it.

 SMTP relay: This delivery is used when the delivery is to an Exchange user or system object
and they are not in the local Active Directory site. The route is takes depends on the destination
server. The possible types are:

❑ SMTPRelayWithAdSite: Messages are routed for delivery to a Hub Transport in the local
Active Directory site.

❑ SMTPRelayWithinAdSiteToEdge: Messages are routed for an external recipient by using
a connector on an Edge Transport server in the local Active Directory site.

❑

❑

❑

❑

 Figure 11 - 1

c11.indd 303c11.indd 303 12/17/07 3:52:57 PM12/17/07 3:52:57 PM

Part III: Working with PowerShell in a Production Environment

304

❑ SMTPRelayToRemoteADSite: Messages are routed for delivery to a Hub Transport server
in a remote Active Directory site. The next hop domain is the AD site. Enhanced DNS
resolves the AD site to a list of remote Hub servers.

❑ SMTPRelayToTiRG: Messages are routed for delivery to an Exchange 2003 Routing
Group Connector. Enhanced DNS is also used to resolve a routing group into a list of
 target bridgehead servers.

 MAPI Delivery: This delivery is used when the recipient is an Exchange user or system object
and they are located in the same Active Directory site. The message is routed to the mailbox
server for local delivery.

 There are two additional types: Undefined and Unreachable. Undefined means the message are in the
Submission queue, and the next hop destination has not been resolved. Unreachable means no route to
the recipient was calculated.

 Hub Sites
 An example of how a Hub site can be necessary is shown in Figure 11 - 2 . Suppose a user in Site A sends a
message to a user in Site C. The Hub Transport in Site A tries to send the message directly to the Hub Trans-
port in Site C, but there is a firewall preventing SMTP traffic. Site B, however, can pass SMTP traffic to either
site. In this case, Site B should be designated as a Hub site to allow message traffic to be routed successfully.

❑

Exchange Server 2007 Routing Group
(DWBGZMFD01QNBJR)

Routing Group A Routing Group B Routing Group C

RGC
Cost = 10

RGC
Cost = 10

RGC
Cost = 10

RGC
Cost = 10

RGC
Cost = 10

 Figure 11 - 2

c11.indd 304c11.indd 304 12/17/07 3:52:58 PM12/17/07 3:52:58 PM

Chapter 11: Exchange Server 2007 Routing

305

 Hub sites must exist along the least cost route between the two Hub servers in order for mail to be
routed there. In other words, just designating a site as a Hub site does not guarantee all mail will route
through it. It must already be a possible hop along the calculated path. Creating Hub sites is discussed
later in this chapter in the “ Working with Active Directory Sites ” section.

 Backoff
 If direct relay fails to all the Hub servers in the destination site, Exchange performs a backoff routine. The
backoff routine tries to determine a new delivery point as close to the point of failure as possible. Remem-
ber, link state information is not stored, so it retries connection attempts to the unavailable site. The mes-
sage queue is automatically put into a retry state and attempts redelivery based on message retry interval
settings. If there are more than four hops to the destination, a slightly different process called binary back-
off is used. Binary backoff selects a connection halfway between the source and destination.

 Figure 11 - 3 shows an example of backoff. The Hub Transport server in Site A tries to deliver a message to
the Hub Transport servers in Site C. The Hub Transport servers in Site C are unavailable, so the Hub
Transport server in Site A attempts to deliver the message to the Hub Transport server in Site B, where it
is put in a queue.

 The current retry settings are retrieved with the Get-TransportServer cmdlet. The syntax for
 Get-TransportServer is:

Get-TransportServer [-Identity < TransportServerIdParameter >]
[-DomainController < Fqdn >]

 Figure 11 - 3 shows the output when the Get-TransportServer cmdlet is run against a Hub Transport
server. This example shows just the configuration settings related to message retry with the following cmdlet:

Get-TransportServer | fl *retry*, *expiration*

Figure 11-3

c11.indd 305c11.indd 305 12/17/07 3:52:58 PM12/17/07 3:52:58 PM

Part III: Working with PowerShell in a Production Environment

306

 The Set-TransportServer cmdlet is used to reconfigure the retry settings. The syntax for
 Set-TransportServer is:

Set-TransportServer -Identity < ServerIdParameter > [-AntispamAgentsEnabled
 < $true | $false >] [-Confirm [< SwitchParameter >]] [-ConnectivityLogEnabled
 < $true | $false >] [-ConnectivityLogMaxAge < EnhancedTimeSpan >]
[-ConnectivityLogMaxDirectorySize < Unlimited >]
[-ConnectivityLogMaxFileSize < Unlimited >] [-ConnectivityLogPath
 < LocalLongFullPath >] [-ContentConversionTracingEnabled < $true | $false >]
[-DelayNotificationTimeout < EnhancedTimeSpan >] [-DomainController < Fqdn >]
[-ExternalDelayDsnEnabled < $true | $false >] [-ExternalDNSAdapterEnabled
 < $true | $false >] [-ExternalDNSAdapterGuid < Guid >]
[-ExternalDNSProtocolOption < Any | UseUdpOnly | UseTcpOnly >]
[-ExternalDNSServers < MultiValuedProperty >] [-ExternalDsnDefaultLanguage
 < CultureInfo >] [-ExternalDsnLanguageDetectionEnabled < $true | $false >]
[-ExternalDsnMaxMessageAttachSize < ByteQuantifiedSize >]
[-ExternalDsnReportingAuthority < SmtpDomain >] [-ExternalDsnSendHtml < $true
| $false >] [-ExternalIPAddress < IPAddress >] [-ExternalPostmasterAddress
 < Nullable >] [-InternalDelayDsnEnabled < $true | $false >]
[-InternalDNSAdapterEnabled < $true | $false >] [-InternalDNSAdapterGuid
 < Guid >] [-InternalDNSProtocolOption < Any | UseUdpOnly | UseTcpOnly >]
[-InternalDNSServers < MultiValuedProperty >] [-InternalDsnDefaultLanguage
 < CultureInfo >] [-InternalDsnLanguageDetectionEnabled < $true | $false >]
[-InternalDsnMaxMessageAttachSize < ByteQuantifiedSize >]
[-InternalDsnReportingAuthority < SmtpDomain >] [-InternalDsnSendHtml < $true
| $false >] [-IntraOrgConnectorProtocolLoggingLevel < None | Verbose >]
[-MaxConcurrentMailboxDeliveries < Int32 >]
[-MaxConcurrentMailboxSubmissions < Int32 >] [-MaxConnectionRatePerMinute
 < Int32 >] [-MaxOutboundConnections < Unlimited >]
[-MaxPerDomainOutboundConnections < Unlimited >] [-MessageExpirationTimeout
 < EnhancedTimeSpan >] [-MessageRetryInterval < EnhancedTimeSpan >]
[-MessageTrackingLogEnabled < $true | $false >] [-MessageTrackingLogMaxAge
 < EnhancedTimeSpan >] [-MessageTrackingLogMaxDirectorySize < Unlimited >]
[-MessageTrackingLogMaxFileSize < Unlimited >] [-MessageTrackingLogPath
 < LocalLongFullPath >] [-MessageTrackingLogSubjectLoggingEnabled < $true |
$false >] [-OutboundConnectionFailureRetryInterval < EnhancedTimeSpan >]
[-PickupDirectoryMaxHeaderSize < ByteQuantifiedSize >]
[-PickupDirectoryMaxMessagesPerMinute < Int32 >]
[-PickupDirectoryMaxRecipientsPerMessage < Int32 >] [-PickupDirectoryPath
 < LocalLongFullPath >] [-PipelineTracingEnabled < $true | $false >]
[-PipelineTracingPath < LocalLongFullPath >] [-PipelineTracingSenderAddress
 < Nullable >] [-PoisonMessageDetectionEnabled < $true | $false >]
[-PoisonThreshold < Int32 >] [-QueueMaxIdleTime < EnhancedTimeSpan >]
[-ReceiveProtocolLogMaxAge < EnhancedTimeSpan >]
[-ReceiveProtocolLogMaxDirectorySize < Unlimited >]
[-ReceiveProtocolLogMaxFileSize < Unlimited >] [-ReceiveProtocolLogPath
 < LocalLongFullPath >] [-RecipientValidationCacheEnabled < $true | $false >]
[-ReplayDirectoryPath < LocalLongFullPath >] [-RootDropDirectoryPath
 < String >] [-RoutingTableLogMaxAge < EnhancedTimeSpan >]
[-RoutingTableLogMaxDirectorySize < Unlimited >] [-RoutingTableLogPath

c11.indd 306c11.indd 306 12/17/07 3:52:58 PM12/17/07 3:52:58 PM

Chapter 11: Exchange Server 2007 Routing

307

 < LocalLongFullPath >] [-SendProtocolLogMaxAge < EnhancedTimeSpan >]
[-SendProtocolLogMaxDirectorySize < Unlimited >]
[-SendProtocolLogMaxFileSize < Unlimited >] [-SendProtocolLogPath
 < LocalLongFullPath >] [-TransientFailureRetryCount < Int32 >]
[-TransientFailureRetryInterval < EnhancedTimeSpan >] [-WhatIf
[< SwitchParameter >]]

 There are quite a few configurable parameters for this cmdlet. The parameters related to message retry are:

 OutboundConnectionFailureRetryInterval : This parameter sets the interval for subse-
quent connection attempts to a remote server. The default value for Hub Transport servers is 10
minutes, and 30 minutes on an Edge Transport server. The value is a type time span, which has
the syntax hh:mm:ss. The hours are hh, the minutes are mm, and the seconds are ss. The valid
range is 00:00:01 to 20:00:00.

 TransientFailureRetryCount : This parameter defines the maximum number of immediate
connection retries when the Hub Transport first has a connection failure. The default value is six
attempts, and is configurable from 0 to 15. After the TransientFailureRetryCount limit is
reached, the next connection attempt is determined by the OutboundConnectionFailure-
RetryInterval parameter.

 TransientFailureRetryInterval : This parameter defines the time interval for subsequent
attempts during the TransientFailureRetryCount period. The default is 5 minutes on a Hub
Transport server, and 10 minutes on an Edge server. The value is a type time span, which has the
syntax hh:mm:ss. The hours are hh, the minutes are mm, and the seconds are ss. The valid range
for TransientFailureRetryInterval is 00:00:01 to 12:00:00.

 MessageExpirationTimeout : This parameter specifies the maximum time a message can be
queued. After the timeout period, the message is returned to the sender as a failure. The default
value is two days, and is also a time span value, but has the syntax dd.hh:mm:ss. Days are dd,
hours are hh, minutes are mm, and seconds are ss. The valid range for MessageExpiration-
Timeout is 00.00:00:05 to 90.00:00:00.

 It is possible to configure the wait time period before the sender receives a delivery status notification
(DSN) by setting the parameter DelayNotificationTimeout . A DSN lets the sender know that a mes-
sage has not yet been successfully delivered, but the system will continue to retry sending the message.
The default is 4 hours, and is a time span value. The syntax is dd.hh:mm:ss. Days are dd, hours are hh,
minutes are mm, and seconds are ss. The valid range for DelayNotificationTimeout is 00.00:00:01 to
30.00:00:00. The value should always be greater than the setting in the TransientFailureRetryCount
multiplied by the TransientFailureRetryInterval parameter.

 Delayed Fan - out
 When a message has multiple recipients with different destinations, Exchange must bifurcate (make cop-
ies) of the message for each distinct destination. Depending on where the bifurcation happens, there may
be considerable bandwidth consumed. For example, a message with 10 different recipients is bifurcated
on the source server. This means up to 10 separate copies of the message must be routed to the next hop.
Now, if it is possible to bifurcate the message further down the route, it is easy to see how much band-
width could be saved.

❑

❑

❑

❑

c11.indd 307c11.indd 307 12/17/07 3:52:59 PM12/17/07 3:52:59 PM

Part III: Working with PowerShell in a Production Environment

308

 Exchange Server 2007 tries to bifurcate, or fan - out, as late in the routing as possible to save network
traffic. If two or more recipients have different destinations, but the least cost paths share some hops, the
message fans out on the hop before the paths diverge. It is not possible to configure or alter delayed
fan - out settings.

 Figure 11 - 4 shows an example of delayed fan - out. A user in Site A, sends a message to three recipients.
Christine is in Site D, and Isabel and Madison are in Site E. A single copy of the message is sent to Site B,
where it is split for delivery. From Site B, a direct delivery is made to Christine in Site D, and Isabel and
Madison in Site E.

Figure 11-4

 Routing Troubleshooting
 As explained at the beginning of this chapter, there must be at least one functioning Hub Transport
server in each Active Directory site where there is a mailbox server. A few key events are logged when
there are issues with a Hub server.

 Common Errors
 The following table lists common errors related to routing that are logged to the Windows Application log.

c11.indd 308c11.indd 308 12/17/07 3:52:59 PM12/17/07 3:52:59 PM

Chapter 11: Exchange Server 2007 Routing

309

 Routing Log Viewer
 Service Pack 1 introduces a new tool for viewing routing information. Previous versions of Exchange
had a utility called WinRoute. WinRoute could connect to the Routing Engine service and retrieve the
current routing information as seen by that server. Exchange Server 2007 routing information is logged,
and the Routing Log Viewer provides similar functionality for Exchange Server 2007 that WinRoute had
in previous versions. The Log Viewer provides information on Active Directory sites, Exchange servers,
connectors, and address spaces. Another nice feature is the ability to compare two log files and see what
changes occurred between the logs. The tool is part of the mail flow tools within the Exchange Manage-
ment Console Toolbox.

 Figure 11 - 5 shows an example of the Routing Log Viewer ’ s compare log feature. This example shows
that a new Send Connector was added between the time the first log was created and the second log was
created. This can be extremely useful when trying to figure out what changed when a message takes an
unexpected route.

Event ID Description

Event 1010 There is no local server object for the Hub Transport server in Active
Directory.

Event 1009 There is a local Hub Transport server, but it is not active. There are
 several reasons it may not be active:

The Microsoft Exchange Transport Service is not running

MAPI RPC is blocked between the mailbox and the Hub

The Hub Transport server has exhausted its submission threads.
For example, the mailbox server submits more traffic than the
Hub Transport can handle.

❑

❑

❑

Event 1008 The Mail Submission Service cannot locate any Hub Transport servers in
the local Active Directory site. This can be caused by:

The Hub Transport server is not working

There are network or connectivity issues to the Hub Transport
server

No server in the local site is running the Hub Transport role

❑

❑

❑

c11.indd 309c11.indd 309 12/17/07 3:52:59 PM12/17/07 3:52:59 PM

Part III: Working with PowerShell in a Production Environment

310

 Message Tracking
 Exchange uses message tracking to log activity as a message is routed throughout the system. Messages
are tracked on the Mailbox, Hub, and Edge Transport server roles. Message tracking is another useful
tool when troubleshooting message delivery. It logs each message event separately, allowing an
 administrator to follow the path a message used. At each step, there are a number of fields logged
with information about the message transfer state, the recipients, and the server names. However, no
message content is stored in the tracking logs.

 To configure message tracking, use the Set-TransportServer cmdlet for configuring the Hub or Edge
servers. Set-TransportServer was discussed earlier in this chapter during the discussion of the back-
off routine and configuring message retry parameters. To configure message tracking on the mailbox
server, use the Set-MailboxServer cmdlet. The following table shows message tracking related
parameters and their defaults.

 Of course, there is message tracking in the Exchange Management Console, but it can also be searched
with PowerShell. The Get-MessageTrackingLog cmdlet is used for this purpose. Its syntax is:

Get-MessageTrackingLog [-DomainController < Fqdn >] [-End < DateTime >]
[-EventId < String >] [-InternalMessageId < String >] [-MessageId < String >]
[-MessageSubject < String >] [-Recipients < String[] >] [-Reference < String >]
[-ResultSize < Unlimited >] [-Sender < String >] [-Server < ServerIdParameter >]
[-Start < DateTime >]

Figure 11-5

c11.indd 310c11.indd 310 12/17/07 3:53:00 PM12/17/07 3:53:00 PM

Chapter 11: Exchange Server 2007 Routing

311

Parameter Description Default

MessageTrackingLogEnabled Enables or disables message
tracking

Enabled

MessageTrackingLogPath The location of the message
tracking logs

C:\Program Files\
Microsoft\Exchange
Server TransportRoles\
Logs\MessageTracking

MessageTrackingLogMax-
FileSize

The maximum size of an indi-
vidual tracking log

10MB

MessageTrackingLogMax-
DirectorySize

The maximum size of the
tracking log directory. When
the maximum is reached, the
oldest log is deleted. Only log
files are counted in the calcu-
lation.

250MB

MessageTrackingLogMaxAge The maximum file age of a
log. Logs older than this date
are deleted.

30 Days

MessageTrackingLogSubject-
LoggingEnabled

Enables or disables including
the subject in the logs

Enabled

 The common fields used in searching are listed next.

 The EventID parameter is the event - id field in the tracking logs. This value is the event classification
for the message. Possible values are:

 Badmail

 Defer

 Deliver

 DSN

 Expand

 Fail

 PoisonMessage

 Receive

 Redirect

 Resolve

 Submit

 Transfer

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

c11.indd 311c11.indd 311 12/17/07 3:53:00 PM12/17/07 3:53:00 PM

Part III: Working with PowerShell in a Production Environment

312

 The Subject parameter corresponds to the message - subject field in the tracking logs. This supports
using partial values.

 The MessageID parameter corresponds to the message - id field in the tracking logs. This value never
changes for the lifetime of the message.

 The Start and End parameters correspond to the date - time field in the tracking logs. Either parameter
used by itself retrieves all entries before or after the specified date. If both are used, the messages fall
within the range between the Start and End . The date - time field is stored in Coordinated Universal
Time (UTC). When including a Start or End time, enter the regional date - time of the computer used to
perform the search. The cmdlet and tracking tool convert the search and the results to and from UTC.

 The ResultSize parameter can limit the number of items returned from the search. The default is 1,000
records, but using the value Unlimited returns all records.

 All parameters are optional to filter the results. If no parameters are used, the cmdlet returns the last
1,000 records from the tracking logs. Edge servers require the Get-MessageTrackingLog cmdlet to be
executed locally on the Edge server.

 A new script, GetMessageTrackingE2LogWithTime.ps1 , is included in Service Pack 1. It makes
searching across all Hub and mailbox servers easier. The script has the following parameters:

❑ MessageID : This is required if the MessageSubject parameter is not used. This parameter
searches the tracking logs for the specified message - id.

 MessageSubject : This is required if the MessageID parameter is not used. This parameter
searches the tracking logs for the specified message - subject.

 End : This optional parameter contains the end date and time to search up to (not including).

 Sender : This optional parameter contains the sender ’ s SMTP email address.

 Servers : This optional parameter is a comma - separated list of Hub or mailbox servers to limit
the tracking log search to.

 Start : This optional parameter contains the beginning date and time to search from
(not including).

 Some examples of message tracking searches are shown next.

 To search all messages from 9/01/2007 6:00 AM to 9/15/2007 6:00 PM from
jrosen@exchange exchange.com on a Hub server, run the following cmdlet:

Get-MessageTrackingLog -ResultSize Unlimited -Start “9/01/2007 6:00AM” -End
“9/15/2007 6:00PM” -Sender “jrosen@exchangeexchange.com”

❑

❑

❑

❑

❑

c11.indd 312c11.indd 312 12/17/07 3:53:01 PM12/17/07 3:53:01 PM

Chapter 11: Exchange Server 2007 Routing

313

 To search all mailbox and Hub servers for messages containing “ Hello World ” from the sender
 jrosen@exchangeexchange.com , run the following script:

GetMessageTrackingE2LogWithTime.ps1 -MessageSubject “Hello World” -Sender
“jrosen@exchangeexchange.com”

 Working with Active Directory Sites
 How Active Directory sites are used in routing was shown earlier in this chapter. This section gives
the details on how to configure sites to control routing. The following is a list of cmdlets discussed
in this section:

 Get-ADSiteLink

 Set-ADSiteLink

 Get-ADSite

 Set-ADSite

 Determining Site Membership
 The server ’ s IP address defines the AD site the server belongs to. Active Directory administrators
 configure site information with the Active Directory Sites and Services MMC. Figure 11 - 6 is an example
of a simple site configuration. This example shows one subnet, 192.168.1.0/24, and two sites,
Default - First - Site - Name and Chicago.

❑

❑

❑

❑

Figure 11-6

c11.indd 313c11.indd 313 12/17/07 3:53:01 PM12/17/07 3:53:01 PM

Part III: Working with PowerShell in a Production Environment

314

 The subnet is associated with the Chicago site as shown in Figure 11 - 6 . This dialog box is reached by
selecting the Chicago site, and right - clicking to select Properties. Any servers that fall within the
192.168.1.0 - 192.168.1.255 are automatically part of the Chicago Active Directory site. Overlapping sub-
nets should not be associated with different sites because the server will not be able to correctly deter-
mine its site membership and this causes errors.

 The process Exchange uses to determine site membership was described earlier in this chapter. The
Microsoft Exchange Active Directory Topology service is responsible for checking and maintaining site
information in Active Directory for the server object.

 One easy way to determine the Active Directory site a server thinks it belongs to is to use the support
utility called Nltest. Nltest is installed from the Windows Server installation disc, in the support
 directory in the supptools.msi package. After installation you can run the following command at
a command prompt:

Nltest /dsgetsite

 The output in this example for a server AD100 is:

C:\Program Files\Support Tools > nltest /dsgetsite
Chicago
The command completed successfully

 Dedicated Exchange Sites
 It was a common practice in Exchange 2000 and Exchange 2003 to create a dedicated Active Directory
site for large organizations. Creating a dedicated site for Exchange was done mainly to keep domain con-
trollers from being used by other services and applications. Because Exchange Server 2007 maps routing
directly to Active Directory sites, this practice no longer is recommended in most circumstances.

 One way to mitigate the impact of competing resources is to upgrade domain controllers to the 64 - bit
Windows platform. According to the Exchange team ’ s guidance, a 32 - bit domain controller can co - exist
with other applications and support up to 10,000 Exchange users. The 64 - bit platform increases this to
20,000 Exchange users, effectively double the load.

 It is possible to create an effect similar to a dedicated site by using DNS to alter record priority and
weights. The TechNet article “ Creating an Active Directory Site for Exchange Server ” found at
 microsoft.com/technet/itsolutions/msit/operations/adforexchangenote.mspx details
the steps for this design in the section on “ How to Isolate Client Authentication Traffic from Exchange
Facing Domain Controllers. ”

 It is also still possible to specify a static set of domain controllers for each Exchange server, but this is not
recommended. This solution requires a lot of manual work to maintain and can easily lead to problems.

 Site Links
 Site link costs help Active Directory determine the least cost route for replication and domain controller site
coverage. The lower the site link cost, the faster the link. Higher costs are slower or more expensive.
Because the site link should map closely to the physical network, the costs should also reflect the speed

c11.indd 314c11.indd 314 12/17/07 3:53:01 PM12/17/07 3:53:01 PM

Chapter 11: Exchange Server 2007 Routing

315

or expense. If for some reason the site link costs do not create optimal mail routing, it is possible to set an
Exchange cost on the site link. This cost will not affect Active Directory replication or site coverage calcula-
tions. To see the current configuration of a site link, use the Get-ADSiteLink cmdlet. The syntax for
Get-ADSiteLink is:

Get-ADSiteLink [-Identity < AdSiteLinkIdParameter >] [-DomainController < Fqdn >]

 Figure 11 - 7 shows the sample output from the Get-ADSiteLink cmdlet:

Get-ADSiteLink | fl

Figure 11-7

 Notice the ExchangeCost is null by default. To set the ExchangeCost parameter ’ s value, use the
Set-ADSiteLink cmdlet. Its syntax is:

Set-AdSiteLink -Identity < AdSiteLinkIdParameter > [-Confirm
[< SwitchParameter >]] [-DomainController < Fqdn >] [-ExchangeCost < Nullable >]
[-MaxMessageSize < Unlimited >] [-Name < String >] [-WhatIf
[< SwitchParameter >]]

Set-AdSiteLink [-Confirm [< SwitchParameter >]] [-DomainController < Fqdn >]
[-ExchangeCost < Nullable >] [-Instance < ADSiteLink >] [-MaxMessageSize
 < Unlimited >] [-Name < String >] [-WhatIf [< SwitchParameter >]]

c11.indd 315c11.indd 315 12/17/07 3:53:02 PM12/17/07 3:53:02 PM

Part III: Working with PowerShell in a Production Environment

316

 To remove any existing values, set the ExchangeCost parameter to $null .

 A new feature in Service Pack 1 is the MaxMessageSize parameter. This parameter allows an
administrator to set message size limits on an IP site link. This is particularly useful for preventing
large messages from going over an expensive or slow link.

 Working with Hub Sites
 Hub sites are used to alter the least cost route to force routing through a specific Active Directory site.
This could be for political or technical reasons, such as network connectivity. To see if an Active Direc-
tory site is enabled as a Hub site, use the Get-ADSite cmdlet. Its syntax is:

Get-ADSite [-Identity < AdSiteIdParameter >] [-DomainController < Fqdn >]

 Figure 11 - 9 shows the output from Get-ADSite . There are two sites; neither is enabled as Hub sites.

Figure 11-8

 Figure 11 - 8 shows an example of setting the ExchangeCost parameter to 150.

c11.indd 316c11.indd 316 12/17/07 3:53:02 PM12/17/07 3:53:02 PM

Chapter 11: Exchange Server 2007 Routing

317

 Before enabling a site as a Hub site, check the routing log to see the least cost routing path from the cur-
rent Active Directory site to any remote Active Directory site. Hub sites are used only if they are part of
the least cost route. To enable an Active Directory site as a Hub site, use the Set-ADSite cmdlet. The
syntax for Set-ADSite is:

Set-AdSite -Identity < AdSiteIdParameter > [-Confirm [< SwitchParameter >]]
[-DomainController < Fqdn >] [-HubSiteEnabled < $true | $false >] [-Name
 < String >] [-WhatIf [< SwitchParameter >]]

Set-AdSite [-Confirm [< SwitchParameter >]] [-DomainController < Fqdn >]
[-HubSiteEnabled < $true | $false >] [-Instance < ADSite >] [-Name < String >]
[-WhatIf [< SwitchParameter >]]

 This example sets the Chicago site as a Hub site:

Set-ADSite -Identity “Chicago” -HubSiteEnabled:$true

 Coexistence with Exchange 2003
 How does message routing occur when Microsoft Exchange Server 2007 coexists in the same Exchange
organization with Exchange Server 2003 or Exchange 2000 Server computers? When a large organization
is transitioning from Exchange 2003 to Exchange Server 2007, a period of coexistence between the
 versions is likely. All of the information for Exchange 2003 applies to Exchange 2000.

Figure 11-9

c11.indd 317c11.indd 317 12/17/07 3:53:02 PM12/17/07 3:53:02 PM

Part III: Working with PowerShell in a Production Environment

318

 Exchange Server 2007 does not support coexistence with Exchange 5.5. A new Exchange Server 2007
organization does not support installation of previous versions into the organization.

 Before Exchange Server 2007 can be installed into an Exchange 2003 organization, it must meet the fol-
lowing criteria:

 No servers can be running Exchange 5.5 in the organization

 The Site Replication Service (SRS) must be decommissioned

 All Active Directory connectors must be removed

 The organization must be running Exchange 2003 native mode

 During the first Exchange Server 2007 Hub Transport server installation, the administrator must select an
initial legacy routing group to create connectors to. The Exchange Server 2007 computers are all part of a
single routing group — DWBGZMFD01QNBJR — and a single administrative group — FYDIBOHF-
23SPDLT. It is important that these routing and administrative groups are not renamed or any Exchange
Server 2007 computers removed from them.

 The name for the Exchange Server 2007 routing and administrative groups come from a simple Caesar
cipher. Shifting all the letters one space reveals EXCHANGE12ROCKS.

 After installation, it is a best practice to add additional source and target servers for load balancing and
fault tolerance. The default cost for the routing group connector is 1.

 Another potential problem with coexistence is the use of restrictions on Exchange 2003 connectors.
The restrictions can be content related, such as allowing system and non - system messages. There are
other restrictions such as user permissions and scheduling. Exchange Server 2007 does not support
these restrictions with the exception of size and public folder referrals. They can cause a message to
pass from Exchange Server 2007 to Exchange 2003 over a connector that will not route the message
due to restrictions. It is a best practice, therefore, to remove any restrictions from Exchange 2003
connectors prior to Exchange Server 2007 ’ s installation.

 Link State Considerations
 To understand the impact that link state has on routing, this section first takes a look at how Exchange
2003 uses link state information. Exchange 2003 uses link state to make routing decisions that avoid
routes that have connection problems. Exchange actually breaks down link state changes by major,
minor, and user versions.

 Major version number: These are physical changes in routing topology. Examples include
the addition of a new connector to the routing group and changes to a connector ’ s
configuration.

❑

❑

❑

❑

❑

c11.indd 318c11.indd 318 12/17/07 3:53:03 PM12/17/07 3:53:03 PM

Chapter 11: Exchange Server 2007 Routing

319

 Minor version number: These are changes to the state of existing connectors. Connectors are
reported as STATE UP or STATE DOWN. Minor changes are delayed by 10 minutes to prevent
oscillating connectors.

 User version number: These are changes such as services starting or stopped. Also, they
occur when the routing group master changes or when another server is added to the
routing group.

 The major changes have the highest priority, the minor changes are next, and the user version changes
are last.

 It may be necessary with the introduction of Exchange Server 2007 to suppress minor state changes.
Without minor state changes, Exchange 2003 doesn ’ t mark connectors as down. This ensures Exchange
2003 always uses least cost routing, and doesn ’ t try to calculate an alternative route. It is recommended
to suppress link state if:

 The organization has more than one Exchange 2003 routing group

 There will be more than one Routing Group Connector between Exchange 2003 and Exchange
Server 2007

 The minor link state must be suppressed on every Exchange 2003 server in the organization. The process
for suppressing minor link state is:

 1. Launch the Registry Editor.

 2. Open HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\RESvc\Parameters .

 3. Right - click Parameters and select New DWORD value. Set the name to
 SuppressStateChanges .

 4. In the value field enter 1 .

 5. Close the Registry Editor and restart the Simple Mail Transfer Protocol (SMTP) service, the
Microsoft Exchange Routing Engine, and the Microsoft Exchange MTA Stacks service.

 Link State Islands
 Exchange 2003 servers share link state information between servers in different routing groups through
the SMTP verb X-Link2State . Exchange Server 2007 does not understand the X-Link2State verb,
thus it will not propagate link state information to Exchange 2003. Even though minor link state is sup-
pressed, Exchange 2003 still needs to receive major updates, which are changes in the routing topology.
During migration, Exchange 2003 routing groups can become isolated. In this case, the routing group
won ’ t be able to submit routing changes, or receive routing changes from other routing groups. To
ensure link state islands do not develop, leave Routing Group Connectors between Exchange 2003 rout-
ing groups. When routing is not desirable, set the Routing Group Connector cost to 100. This prevents
normal traffic, but allows link state information to continue to propagate.

❑

❑

❑

❑

c11.indd 319c11.indd 319 12/17/07 3:53:03 PM12/17/07 3:53:03 PM

Part III: Working with PowerShell in a Production Environment

320

Exchange Server 2007 Routing Group
(DWBGZMFD01QNBJR)

Routing Group A Routing Group B Routing Group C

RGC
Cost = 10

RGC
Cost = 10

RGC
Cost = 10

RGC
Cost = 10

RGC
Cost = 10

Figure 11-10

Figure 11-11

 Now, Routing Group B is fully migrated to Exchange Server 2007 and the administrator decommissions
and removes the routing group and its connectors as illustrated in Figure 11 - 11 .

 Here is an example on how link state islands can occur. Figure 11 - 10 shows an Exchange Server 2007
routing group and three Exchange 2003 routing groups — A, B, and C. Routing Group B is a hub for
Exchange 2003 routing.

c11.indd 320c11.indd 320 12/17/07 3:53:03 PM12/17/07 3:53:03 PM

Chapter 11: Exchange Server 2007 Routing

321

Exchange Server 2007 Routing Group
(DWBGZMFD01QNBJR)

Routing Group A Routing Group C

RGC
Cost = 10

RGC
Cost = 10

Figure 11-12

 Figure 11 - 12 shows clearly how now Routing Groups A and C are link state islands. Because the only
connectivity is through the Exchange Server 2007 routing group, there is no way for link state informa-
tion to flow between the Exchange 2003 routing groups.

 One way to prevent or correct this problem is to add Routing Group Connectors between Routing Group
A and Routing Group C. Setting the cost to 100 prevents mail flow, but allows the sites to exchange link
state information. See Figure 11 - 13 .

c11.indd 321c11.indd 321 12/17/07 3:53:04 PM12/17/07 3:53:04 PM

Part III: Working with PowerShell in a Production Environment

322

Exchange Server 2007 Routing Group
(DWBGZMFD01QNBJR)

Routing Group A Routing Group C

RGC
Cost = 10

RGC
Cost = 100

RGC
Cost = 10

Figure 11-13

 Coexistence Routing
 Earlier in the chapter, the least cost routing algorithm was explored. This section looks at the impact of
Exchange 2003 coexistence on routing. The connector cost is comprised of the destination address space
as well as the site or connector cost. The cost can be thought of as the Exchange 2003 “ legacy ” Routing
Group Connector cost and the Exchange Server 2007 Active Directory site cost. The best route is the
route with the best legacy cost followed by the Active Directory site cost. Because of this design, routes
can stay within the Exchange Server 2007 routing group and go across site connectors with higher costs.

 Consider the example in Figure 11 - 14 . A user in Site 1 on Exchange Server 2007 sends a mail to an
external recipient at exchangeexchange.com.

c11.indd 322c11.indd 322 12/17/07 3:53:04 PM12/17/07 3:53:04 PM

Chapter 11: Exchange Server 2007 Routing

323

Exchange Server 2007 Routing Group
(DWBGZMFD01QNBJR)

Routing Group A
Routing Group B

Smtp:exchangeexchange.com:10

RGC
Cost = 5

RGC
Cost = 5

Site Link
Cost = 100

Site 1 Site 2

RGC
Cost = 5

Figure 11-14

 There are two routes the message could take in Figure 11 - 14 , shown in the following table.

Option Path Cost (Legacy, Site)

1 Site 1 to Routing Group A;
Routing Group A to Routing
Group B

20, 0

2 Site 1 to Site 2; Site 2 to Routing
Group B

15, 100

 Even though the lowest cost route appears to be option 1, with a total cost of 20 is the path from Site 1 to
Routing Group A, then to Routing Group B. The other path has the lowest legacy cost, 15, and option 2
will be used.

c11.indd 323c11.indd 323 12/17/07 3:53:04 PM12/17/07 3:53:04 PM

Part III: Working with PowerShell in a Production Environment

324

Exchange Server 2007 Routing Group
(DWBGZMFD01QNBJR)

Routing Group A

RGC
Cost = 5

Site Link
Cost = 10

Site 1
Site 2

Smtp:exchangeexchange.com:10

Site 3

Smtp:exchangeexchange.com:10

Routing Group B

Smtp:exchangeexchange.com:10

Site Link
Cost = 50

Site Link
Cost = 100

RGC
Cost = 5

RGC
Cost = 5

Figure 11-15

 Building on that example, if a third Active Directory site is added to the picture, and Send Connectors
are added to the Hub Transport servers in Site 2 and Site 3, the routing now looks like Figure 11 - 15 .

c11.indd 324c11.indd 324 12/17/07 3:53:05 PM12/17/07 3:53:05 PM

Chapter 11: Exchange Server 2007 Routing

325

 The resulting route would be option 4, from Site 1 to Site3. This is because it has the lowest legacy cost,
followed by the lowest site cost.

 Summary
 This chapter started by showing the differences between Exchange 2003 and Exchange Server 2007. The
routing has gone through significant modifications, including integration with Active Directory sites,
deterministic routing, and separation of transport from the mailbox server. This chapter showed how
these changes enable more efficient routing based on Active Directory replication and network topology.
It also enables transport rules enforcement, which guarantees every message routes through a Hub
Transport server, even when users are located on the same server, or even the same database.

 This chapter explained the route selection process and how Exchange builds a least cost route. Another
major change is that messages are directly routed when possible. Once the route is selected, the server
must decide which queue and connector to submit the message to. It is possible to alter the route with
Hub sites. It is important to understand that if a Hub site is along a least cost path, all messages must
route through it. This enables specific scenarios, such as a firewall preventing end - to - end network con-
nectivity. Next, this chapter showed how Exchange Server 2007 performs its backoff process when the
destination server is unavailable. This is also where the message retry settings where explained.

 Another new concept to Exchange Server 2007 is delayed fan - out. To help conserve network bandwidth,
Exchange tries to split the message destined for multiple recipients as close as possible to the
remote sites.

 An examination of troubleshooting showed common errors, the new Routing Log Viewer, and how
to configure and use message tracking. All of these methods are valuable to an administrator trying to
understand what happened to a message when a customer wants verification that a message
was delivered.

 The next section showed the detail on how to configure link costs and Hub sites. It addressed the
common design in Exchange 2003 of the dedicated Exchange Active Directory site. Finally, the chapter
looked at the intricacies of coexistence with legacy Exchange implementations. There are a number
of link state considerations and impact to routing when there are Exchange 2003 servers in
the organization.

 The costs are summarized in the following table.

Option Path Cost (Legacy, Site)

1 Site 1 to RG A; RG A to RG B 20, 0

2 Site 1 to Site 2; Site 2 to RG B 15, 70

3 Site 1 to Site 2 0, 80

4 Site 1 to Site 3 0, 60

c11.indd 325c11.indd 325 12/17/07 3:53:05 PM12/17/07 3:53:05 PM

c11.indd 326c11.indd 326 12/17/07 3:53:05 PM12/17/07 3:53:05 PM

 Working with
Continuous Replication

 Many companies have grown to recognize email as a business - critical application. Also, messaging
platforms have integrated into areas such as Unified Messaging and workflow processes. New
ways to access mail and documents through mobile phones and VPNs make user access 24x7x365.
Because of this reliance on these services, companies need to make Exchange available without
interruption. It is no longer acceptable to take a service offline — even for maintenance. In
response to customer needs, Microsoft designed Exchange to work in a Windows cluster. In this
configuration, Exchange is fault tolerant to hardware failure by sharing a single copy of the
database and log files. This solution also provides the benefit for administrators to minimize
downtime due to regular server maintenance, such as applying security updates.

 However, in recent years, catastrophic events like Hurricane Katrina and the World Trade Center
bombing in 1993 and terrorist attacks on 9/11 forced companies to think about site resiliency. In
Exchange 2003 and earlier, organizations that wanted geographical fault tolerance needed to turn
to third parties to provide data replication. A typical scenario in Exchange 2003 was an Exchange
cluster attached to a SAN for hardware/software replication of Exchange data to a second SAN.
This solution could be costly and some solutions had no support from Microsoft. Clustering in
general is more complicated and requires well - defined processes. For example, the hardware
selection and software installation differs significantly compared to a non - clustered server.
Unfortunately, many administrators were not trained adequately, and outages could actually
become longer or more severe due to administration mistakes.

 In response to the growing demand for a supported, less costly, and easier to administer cluster
design, Exchange Server 2007 introduces three forms of continuous replication — Local
Continuous Replication (LCR), Clustered Continuous Replication (CCR), and new in Service Pack
1 — Standby Continuous Replication (SCR). In addition, Exchange still offers traditional Single
Copy Clusters (SCCs).

c12.indd 327c12.indd 327 12/17/07 3:56:40 PM12/17/07 3:56:40 PM

Part III: Working with PowerShell in a Production Environment

328

 In this chapter you learn about:

❑ Installing different types of continuous replication

 ❑ Seeding replications

❑ Monitoring system health

❑ Failover and fallback

 Understanding Continuous Replication
 Continuous replication is the new cluster model in Exchange Server 2007. Before learning what
continuous replication is, you need to understand what clustering was like in previous versions.
Exchange clustering is built on top of Windows Server 2003 Server Clustering (WSSC). WSSC clusters
allow for multiple nodes, or servers, to share a set of resources. In Exchange, the database and log files
are examples of shared resources. Also, Exchange creates a virtual Exchange server, called the Clustered
Mailbox Server (CMS). The CMS is what mail clients use as their mailbox server. The clustering service
is able to detect a fault in the network, node, or storage and tries to move the resources to the operational
node. Exchange supports up to eight nodes in a Single Copy Cluster, where at least one node is a
passive node. A passive node is a server node in the cluster that is simply waiting for a failure on an
active node so that it can take ownership of the resources and restore service. Mail clients have no idea
that the CMS is not a “ real ” server and will simply reconnect when the resources are brought online on
the passive node.

 Another piece of the WSSC cluster is that the nodes need to make sure only one server has ownership
of the resources at a time. This is achieved through the use of a quorum resource, which is shared disk.
The quorum resource is also shared across all the nodes and contains cluster state and configuration
information. Whichever node has ownership of the quorum is the active node. If the quorum resource
fails, all nodes will go offline, because the nodes will not be able to know which is the active node.

 Although this design provides high availability, it has some shortcomings. The challenges behind a
Single Copy Cluster are complexity, cost, and there are still single points of failure. To address these
issues, Microsoft added a continuous replication model. Other Microsoft technologies, such as Microsoft
SQL Server, already offer a similar form of clustering. In the continuous replication model, the cluster
nodes do not share disk resources. This solution addresses one of the single points of failure in SCC,
which is that a single copy of the data exists across all nodes. Now in continuous replication, each node
maintains its own copy of the data. How is this accomplished? To keep the nodes in sync, Exchange uses
asynchronous replication, also called log shipping. The first step in forming the cluster is to copy the
Exchange database to the passive node. This process is called seeding. Once the passive node has a full
copy of the database, it pulls closed log files from the active node. After the copy process completes and
the log file is checked for integrity, the passive node replays the log into its copy of the database. In a
Clustered Continuous Replication (CCR) cluster, the replay happens immediately after validation. In a
Local Continuous Replication (LCR) cluster, it is batched on 10 logs or 60 seconds, whichever comes first.
This is changed in Service Pack 1, and LCR no longer batches replay. Because the passive node must wait
for the active log file to be closed, there is a delay in the passive node ’ s ability to stay completely in sync.

 Continuous replication is used in three different high - availability solutions in Exchange Server 2007 with
Service Pack 1. The next few sections explain the differences between the models, and will help an
administrator decide which models are appropriate to meet the organization ’ s service level agreements.

c12.indd 328c12.indd 328 12/17/07 3:56:41 PM12/17/07 3:56:41 PM

Chapter 12: Working with Continuous Replication

329

 Clustered Continuous Replication
 Now that continuous replication has been explained, the first solution to consider is Clustered
Continuous Replication (CCR). CCR is a high - availability solution that is built on top of WSSC, similar to
SCC described earlier. Figure 12 - 1 shows all of the pieces that make up a CCR.

Figure 12-1

 First, CCR is limited to two nodes, one active and one passive. The virtual “ floating ” Exchange instance
is called the Clustered Mailbox Server. As shown in the figure, each node has its own separate storage.
This is very different from the SCC model. As a result of no shared storage, a new solution had to be
created for the quorum resource. A new quorum model was added to Windows Server 2003 called
Majority Node Set (MNS) quorum with file share witness. The feature is available as a hotfix to Windows
Server 2003, or it ’ s included in Windows Server 2003 Service Pack 2.

 The file share witness (FSW) is a file share that resides on a server outside of the cluster. Typically, the
FSW is created on a Hub server. The MNS cluster requires two of the three cluster resources available for
the cluster to stay online. For example, the FSW can go offline and not affect the cluster, because both
nodes can still communicate with each other. The nodes use a heartbeat, or periodic check, to ensure the
resource is available. Similarly, one node can lose communication and the cluster will stay online as long

c12.indd 329c12.indd 329 12/17/07 3:56:41 PM12/17/07 3:56:41 PM

Part III: Working with PowerShell in a Production Environment

330

as the FSW is available. If two resources cannot communicate, the entire cluster will shut down. This is
because without the heartbeat and connectivity to the FSW, the node cannot determine if it ’ s the active
node. If both nodes think they are the active node, this condition is called split brain syndrome. Unlike in
SCC, split brain cannot occur in a CCR cluster because if there is no majority, the nodes will not come
online.

 What are the other differences between SCC and CCR?

❑ Both data and server resilience. SCC provides only server resilience unless additional third -
 party SAN replication is used.

❑ No special hardware. Not required to use Windows Hardware Compatibility List (WHCL)
certified hardware and each node can run different hardware.

❑ No shared storage. It is possible to use a variety of storage solutions.

❑ No split brain syndrome.

 On the surface it would appear CCR requires double the storage needed compared to an SCC cluster,
because each node has a copy of the database and logs. However, many organizations use third - party
solutions to provide data resiliency in an SCC SAN solution. So, in fact it is common for SCC and CCR to
use the same amount of storage.

 The third bullet, no shared storage, allows a company to use either SAN technologies or direct attached
storage (DAS). DAS has come a long way since Exchange 5.5, and is a low - cost alternative to using a
SAN. Most of the features offered by a SAN are from the software that runs the disk array. The actual
hard drives do not differ between the storage solutions. Because Exchange provides data replication out
of the box, there is no need to turn to third - party offerings, which are often costly. For companies that
have an existing SAN strategy, it is perfectly fine to use it for CCR. However, to provide true
redundancy, the nodes should not be connected to the same SAN.

 You might choose CCR for your deployment because:

❑ High availability is required for both hardware and Exchange data.

❑ Eliminate all single points of failure without third - party software

❑ Ability to use low - cost DAS storage

❑ Ability to use a variety of hardware — not restricted to WHCL certification

 Next is Local Continuous Replication, which is another continuous replication architecture.

 Local Continuous Replication
 Local Continuous Replication (LCR) is similar to CCR, except it requires only one server. This provides
data protection only; because there is only one server, clustering LCR is not supported. Figure 12 - 2
illustrates a single LCR server design.

c12.indd 330c12.indd 330 12/17/07 3:56:41 PM12/17/07 3:56:41 PM

Chapter 12: Working with Continuous Replication

331

 LCR provides a great way to provide quick recovery for one or more storage groups, with the only costs
being additional disk and processor power. LCR takes approximately 20 percent more CPU processing to
handle the log file verification and log file replay. It is also suggested to use an additional 1 gigabyte of
RAM in this configuration.

 The storage group configuration is the same as CCR, one database per storage group. Unlike CCR, it is
possible to enable LCR on per storage group basis. This gives organizations the flexibility of redundancy
for users that may have a higher SLA, without incurring the cost of doubling the disk for the entire
server. The passive copy should use its own dedicated set of disks to prevent performance problems.
Using iSCSI storage for the passive storage is not recommended because iSCSI connects over a local or
wide area network and may not provide enough bandwidth or low latency. It is critical to maintaining
high availability that log shipping stay up to date, and this configuration makes it difficult to predict
bandwidth usage impact from other applications.

 Another best practice is to use volume mount points for database and log LUNs. A LUN is a disk
volume, typically made from multiple physical disks configured in an array. Most administrators are
familiar with volumes as drive letters. Instead of using drive letters for disk volumes, mount points
allow LUNs to be mounted into a folder on a different physical disk. Instead of mounting each storage
group LUN with drive letters, first create a small root directory with a drive letter and a folder; for
example, a small 1 - gigabyte volume assigned a drive letter K: and a root folder Storage Groups . Then
mount the storage group LUN to the K:\Storage Groups folder. In this example, the LUN for storage
group one would be K:\Storage Groups\SG1 . To applications like Exchange, this grafting is

Figure 12-2

c12.indd 331c12.indd 331 12/17/07 3:56:42 PM12/17/07 3:56:42 PM

Part III: Working with PowerShell in a Production Environment

332

completely transparent — it appears as one volume. Using mount points has several advantages. One is
that there is a 26 drive OS limitation. On a fully loaded Exchange Server 2007 computer with 50 storage
groups, there would not be enough drive letters to have each disk volume assigned a drive letter. Mount
points reduce the number of drive letters needed because of the reasons discussed earlier. Another
benefit to using mount points is that it gives a lot of flexibility during a recovery scenario because it is
possible to replace the failed disk volume by grafting the LCR copy disk volume in its place.

 Do not enable LCR for the storage group that contains the public folder database if more than one public
folder server exists in the organization. Public folders are always replicating content and hierarchy
information. If there is a failover, an item originated on the failed node would exist on the other public
folder servers. To prevent this situation, if there is an unscheduled failover the public folder server will
not mount until the original database is brought back online. If a log was lost, the database will not
mount to prevent data integrity issues.

 You might choose LCR because:

 ❑ High availability is required for just Exchange and not the hardware

❑ High availability is required for specific sets of users, not everyone

❑ Ability to use low - cost DAS storage

❑ Ability to use a variety of hardware — not restricted to WHCL certification

 Standby Continuous Replication
 Standby Continuous Replication is a new option for site resiliency introduced in Service Pack 1. SCR
uses the same continuous replication as CCR and LCR, but it has some key differences:

❑ There can be multiple CCR targets per storage group

❑ The replication can be delayed allowing for network bandwidth control and prevention of
logical data corruption

❑ It is not possible to back up an SCR copy

 The SCR source can be a stand - alone mailbox server, an LCR - enabled mailbox server, a Single Copy
Cluster, or a CCR cluster. The SCR target can be a stand - alone mailbox server, or a clustered server that
does not have a Clustered Mailbox Server configured. Some of these options are shown in Figure 12 - 3 .

c12.indd 332c12.indd 332 12/17/07 3:56:42 PM12/17/07 3:56:42 PM

Chapter 12: Working with Continuous Replication

333

Figure 12-3

 As mentioned previously, it is possible to create multiple SCR targets for a single SCR source. For
example, a company may have a main datacenter and use CCR to provide local high availability, and
configure two SCR targets — each in different physical locations. It is recommended that a source have
four or fewer targets. It is also possible to have multiple SCR sources replicate to a single SCR target, as
long as the total number of storage groups on the target does not exceed the 50 storage group limit.

c12.indd 333c12.indd 333 12/17/07 3:56:42 PM12/17/07 3:56:42 PM

Part III: Working with PowerShell in a Production Environment

334

 You might choose SCR because:

❑ Site resiliency is required

❑ High availability is required for specific sets of users

❑ Ability to use low - cost DAS storage

❑ Ability to use a variety of hardware — not restricted to WHCL certification

 This chapter discusses installing, seeding, monitoring, failover, and failback of LCR, CCR, and SCR
clusters.

 Installing LCR, CCR, SCR
 This section examines the installation process for CCR, LCR, and SCR. LCR and SCR can be added on
after installation, whereas CCR must be configured during the server install. The following cmdlets are
used during installation:

❑ New-MailboxDatabase

❑ Enable-DatabaseCopy

❑ New-PublicFolderDatabase

❑ Enable-StorageGroupCopy

❑ Get-MailboxDatabase

❑ New-StorageGroup

 Installing Local Continuous Replication (LCR)
 LCR can be enabled to an existing database, or enabled when creating a new database.

 Overall the steps for enabling LCR are:

 1. Ensure 1 - 1 storage group to database design

 2. Enable LCR on the database

 3. Enable LCR on the storage group

 Enabling the Database
 The first step in enabling LCR on an existing mailbox server is to ensure there are not multiple databases
per storage group: It may be necessary to create additional storage groups and databases and move
users. Once the storage group is ready, enable LCR with the Enable-DatabaseCopy cmdlet:

 Enable-DatabaseCopy -Identity < DatabaseIdParameter > [-CopyEdbFilePath
 < EdbFilePath >] [-DomainController < Fqdn >]

c12.indd 334c12.indd 334 12/17/07 3:56:43 PM12/17/07 3:56:43 PM

Chapter 12: Working with Continuous Replication

335

 The Identity parameter is the database source that will be LCR enabled. This database cannot be a
recovery storage group database.

 The parameter CopyEdbFilePath is the location of the backup database (.edb) file. This path cannot be
the same as the source location. Also, the LCR database filename must be identical to the source database
filename.

 The following example enables LCR on the first storage group on the server MB100:

 Enable-DatabaseCopy -Identity “MB100\First StorageGroup\Mailbox Database”
-CopyEdbFilePath “E:\LCRbackup\storagegroups\sg1db\mailbox database.edb”

 To check the status of the LCR on a database, check the HasLocalCopy parameter from the
Get-MailboxDatabase cmdlet. If HasLocalCopy is true , LCR is enabled for that database, and it is
 false otherwise. The following example outputs the LCR status of all mailbox databases in the
organization:

 Get-MailboxDatabase | fl Identity, HasLocalCopy

 Enabling the Storage Group
 Before LCR is enabled, the storage group must also be configured with the Enable-StorageGroupCopy
cmdlet:

 Enable-StorageGroupCopy -Identity < StorageGroupIdParameter > [-Confirm
[< SwitchParameter >]] [-CopyLogFolderPath < NonRootLocalLongFullPath >]
[-CopySystemFolderPath < NonRootLocalLongFullPath >] [-DomainController
 < Fqdn >] [-ReplayLagTime < Nullable >] [-SeedingPostponed
 < SwitchParameter >] [-StandbyMachine < String >] [-TruncationLagTime
 < Nullable >] [-WhatIf [< SwitchParameter >]]

 The CopyLogFolderPath and CopySystemFolderPath parameters must contain a different path than
the source storage group. No other storage groups can share the same path.

 The SeedingPostponed switch parameter takes no value and prevents the newly enabled storage group
copy from automatic seeding. Seeding is discussed in the next section.

 This cmdlet continues the previous example, and LCR enables the first storage group on the server
MB100 without an initial seeding:

 Enable-StorageGroupCopy -Identity “mb100\first storage group”
-CopyLogFolderPath “E:\LCRBackup\Logs\SG1Logs” -CopySystemFolderPath
“E:\LCRBackup\Logs\SG1Logs” -SeedingPostponed

c12.indd 335c12.indd 335 12/17/07 3:56:43 PM12/17/07 3:56:43 PM

Part III: Working with PowerShell in a Production Environment

336

 Installing Clustering Continuous Replication (CCR)
 Unlike LCR, CCR can be enabled only when installing the mailbox server. The cluster must be
configured before installing the Clustered Mailbox Server (CMS). The CMS is analogous to the Exchange
Virtual Server (EVS) in Exchange 2003.

 The steps to installing a CCR cluster are:

 1. Create the cluster service account

 2. Install Windows 2003 R2 SP2 and requirements

 3. Create the cluster

 4. Create and assign the file share witness

 5. Configure the cluster heartbeat

 6. Configure the network interfaces

 7. Create the Clustered Mailbox Server Active Directory Object

 8. Install the Mailbox server role on the primary node

 9. Install the Mailbox server role on the secondary node

 You can find complete non - scripting based instructions for installing Clustering Continuous
Replication at http://technet.microsoft.com/en - us/library/aa997144.aspx or in the
Exchange Server 2007 help file.

 Creating the Cluster Service Account
 The service account for the cluster service needs to be a member of the domain. If the installation of the
cluster is done by an administrator that is not the service account, the service account will be added to
the local administrators group on each node during the installation process. Using this PowerShell script
creates a new Organizational Unit (OU) in the Exchangeexchange domain, and creates a new user
within that OU and sets his or her password to neverexpire . The final portion also sets the user
password:

 $DC1=”exchangeexchange”
$DC2=”local”
$DC3=$DC1+”.”+$DC2+”:389”
$Service_Account_OU=”SVC_Accounts”
$User=”svc-mb001”
$Password=”P@55w0rd”
$objDomain = [ADSI]”LDAP://$DC3/dc=$DC1,dc=$DC2”
$objOU = $objDomain.Create(“organizationalUnit”, “ou=$Service_Account_OU”)
$objOU.SetInfo()
$objOU = [ADSI]”LDAP://$DC3/ou=$Service_Account_OU,dc=$DC1,dc=$DC2”
$objUser = $objOU.Create(“user”, “cn=$User”)
$objUser.Put(“sAMAccountName”, “$User”)
$objUser.SetInfo()
$objUser.SetPassword(“$Password”)
$objUser.SetInfo()
$objUser.Put(“UserAccountControl”, “66048”)
$objUser.SetInfo()

c12.indd 336c12.indd 336 12/17/07 3:56:43 PM12/17/07 3:56:43 PM

Chapter 12: Working with Continuous Replication

337

 Installing Windows 2003 R2 SP2
 Install Windows Server R2 Service Pack 2 on both nodes. Exchange Server 2007 Service Pack 1 requires
Service Pack 2 for Windows 2003. The Mailbox server role requires the following components be
installed:

❑ WWW Service

❑ IIS Manager

❑ IIS Common Files

❑ COM+ Network Access

 It is possible to script adding these Windows components with the command - line utility Sysocmgr.exe :

 Sysocmgr /i: < master_oc_inf > /u: < unattend_spec > < /q > < /w > < /r >

❑ The /i parameter is the full path to the master OC file. The default location is C:\windows\
inf\sysoc.inf .

❑ The /u parameter is the full path to the unattend file that has the components to be installed.

❑ The /q switch runs the unattended install without a user interface. The /u switch must be
specified to use the /q switch.

❑ The /w switch prompts before a reboot. The /u switch must be specified to use the /w switch.

❑ The /r switch suppresses a reboot.

 For example, first create the Answerfile.inf file with the following lines:

 [components]
complusnetwork=on
iss_commmon=on
iis_www=on
iis_inetmer=on

 Next, use Syscomgr.exe to install the components:

 sysocmgr /i:C:\windows\inf\sysoc.inf /u:c:\answerfile.inf

 After the installation is complete, it is possible to check the installation with the Add/Remove Programs
control panel applet.

c12.indd 337c12.indd 337 12/17/07 3:56:44 PM12/17/07 3:56:44 PM

Part III: Working with PowerShell in a Production Environment

338

 Creating the Cluster
 Now that Windows and the prerequisites are installed, the Windows cluster can be created. The
Windows cluster service manages the shared resources, ensures only one node is active, and performs
failover when necessary. The cluster command - line utility, cluster.exe , will install and configure the
two - node cluster:

 1. To use cluster.exe to create a new cluster, the following parameters are required:

❑ Cluster name

❑ Cluster IP address

❑ User account that will run the cluster service

❑ Password for the cluster service user account

❑ Hostname of the node that the cluster will be installed on

 Instead of statically defining all of the required parameters, you can use PowerShell as shown
here to set all of the parameters as variables, and then you could run the cluster install the script:

 $Cluster_Name=”MB100MSCS”
$Cluster_IP=”192.168.1.90”
$Cluster_Subnet=”255.255.255.0”
$Interface1_New=”Public”
$User (reused from user configuration)
$Password (reused from user configuration)
$Node1_Hostname=”MB001A”
$Logfile=”c:\mscs_install.txt”
cluster /cluster:$Cluster_Name /create
/IPAddr:$Cluster_IP,$Cluster_Subnet,$Interface1_New
/USER:$User /pass:$Password /node:$Node1_Hostname /verbose > $Logfile

 2. The command creates a new cluster, but it is not the correct quorum type. There is no way to
set the cluster to the type Majority Node Set (MNS) during the initial creation. This will be
configured in Steps 3 and 4.

 Cluster /cluster:$Cluster_Name /create /IPAddr:$Cluster_IP /USER:$User
/password:$Password /node:$Node1_Hostname /verbose > $logfile

 3. The next command creates the Majority Node Set resource in the cluster group:

 Cluster resource “Majority Node Set” /create -group:”cluster group”
-type:”Majority Node Set” /online /wait

 4. Now, change the cluster from a local quorum to Majority Node Set:

 Cluster -quorum:”Majority Node Set”

c12.indd 338c12.indd 338 12/17/07 3:56:44 PM12/17/07 3:56:44 PM

Chapter 12: Working with Continuous Replication

339

 5. The last step is to remove the Local Quorum resource that was created in the initial install:

 Cluster res “Local Quorum” -offline -delete

 6. Once the install is complete, the second node can be added by using the following script:

 $Cluster_Name (reused from the initial configuration above)
$Node2_Hostname=”MB101”
$Password (reused from user configuration)
Cluster /cluster:$Cluster_Name /add:$Node2_Hostname /password:$Password /verbose

 Creating and Assigning the File Share Witness
 The file share witness (FSW) feature is an update for MNS clusters. It was released as a post - Windows
2003 SP1 download in kb921181. It is included in Service Pack 2 for Windows 2003. The FSW quorum
allows the cluster nodes to share a file share outside of the cluster to add an additional vote for cluster
status. As long as any two resources are available, the cluster nodes know which node is active. If two
resources go offline, the entire cluster shuts down because it is not possible for a node to know if it is
active or passive.

 The recommended location for the FSW is on a CAS or Hub server. Another recommendation is to use a
DNS CName record for the server name hosting the FSW. This makes changing the server that has the
replacement FSW easier because the cluster configuration does not have to change, only the DNS record
needs to be updated. If the DNS alias is not used, an administrator would have to go through the steps
in this section again to create the new FSW. This process is more time consuming than a simple record
update.

 1. First set the parameters needed for the FSW creation:

❑ User is the cluster service account

❑ Cluster_Name is the name of the cluster

❑ User_Perm is the full permission for the cluster service account

❑ Share_Path is the full path for the file share

❑ DirPath is the full path the shared directory

❑ CMS_Name is the name of the Clustered Mailbox Server

 $Cluster_Name (reused from the initial configuration above)
$User_Perm=$User+”:F”
$Share_Path=”\\MBFSW\MNS_FSW_MBCCR”
$Share_Name=”MNS_FSW_MBCCR”
$Dir_Path=”C:\FSWMB100CCR”
$CMS_Name=”MB100CCR”
$Share_DNS_Name=”MBFSW”
$FSW_Server_Name=”CA100.exchangeexchange.local”
$FSW_Share_Full_Path=”Mbfsw.exchangeexchange.local\MNS_FSW_MBCCR”

 2. From the root of the C drive on the Client Access Server, create the FSW path:

 Mkdir $Dir_Path

c12.indd 339c12.indd 339 12/17/07 3:56:44 PM12/17/07 3:56:44 PM

Part III: Working with PowerShell in a Production Environment

340

 3. Next, assign the full permission for the cluster service account to the share:

 Cacls $Dir_Path /G BUILTIN\Adminsitrators:F $User_Perm

 4. Create the file share and grant the cluster service account full control:

 Net share $Share_Name=$Dir_Path /GRANT:”$User,FULL”

 5. Create the DNS entry for the FSW CName:

 Dnscmd $DNS_Server /recordadd $DNS_Zone $Share_DNS_NAME CNAME $FSW_Server_Name

 In order for the CAS to respond to requests with a different hostname, follow http://support
.microsoft.com/kb/281308 to implement security workarounds if the connection returns an error
when making a connection.

 6. Next, configure the MNS quorum to use the new FSW. This command should be run on the ac-
tive node:

 Cluster $Cluster_Name res “Majority Node Set” /priv
MNSFileShare=$FSW_Share_Full_Path

 7. If the command is successful it will output a warning stating that the changes just made will not
take immediate effect. Open the FSW file share and see that it created a new directory. This is
where the cluster will store its quorum files.

 System warning 5024 (0x000013a0).
The properties were stored but not all changes will take effect until the next time
the resource is brought online.

 8. To force the changes to take effect, fail the cluster group to the passive node:

 Cluster $Cluster_Name group “Cluster Group” /move
Moving resource group ‘ Cluster Group’...

Group Node Status
-------------------- --------------- ------
Cluster Group MB100 Online

 9. Repeat this again to fail back to the original active node. Finally, check the status of the FSW
resource with the following command:

 Cluster $Cluster_Name res “Majority Node Set” /priv

 The output from the test server is:

 T Resource Name Value
-- -------------------- ------------------------------ -----------------------
S Majority Node Set MNSFileShare
\\Mbfsw.exchangeexchange.
local\MNS_FSW_MBCCR
D Majority Node Set MNSFileShareCheckInterval 240 (0xf0)
D Majority Node Set MNSFileShareDelay 4 (0x4)

c12.indd 340c12.indd 340 12/17/07 3:56:45 PM12/17/07 3:56:45 PM

Chapter 12: Working with Continuous Replication

341

 Configuring the Cluster Heartbeat
 Four additional parameters can be changed to control failover behavior:

❑ MNSFileShareCheckInterval

❑ MNSFileShareDelay

❑ HeartBeatLostInterfaceTicks

❑ HeartBeatLostNodeTicks

 The first two parameters, MNSFileShareCheckInterval and MNSFileShareDelay , control the file
share witness health checks. In general, these two settings do not need to be changed.

 MNSFileShareCheckInterval is the time interval the cluster uses to verify the health of the file share
witness. The default value is 4 minutes (240 seconds), and can be set from 4 seconds to 268,435,455
seconds.

 MNSFileShareDelay is the delay in seconds that the cluster node (which does not currently own the file
share witness) will wait until it tries to get the vote from the witness. This allows the current owner of
the file share witness resource to be preferred when trying to win the vote.

 The other two parameters configure the heartbeat. The cluster heartbeat is periodic communications sent
between the nodes to confirm the node ’ s network interface is still active. The goal is to minimize
unnecessary failovers if a few packets get delayed or dropped. The default configuration sends a
heartbeat message every 1.2 seconds from each node. It is not possible to change the timing of the
heartbeat message; rather it is possible to configure the number of heartbeats needed to report interface
or node failure with the parameters HeartBeatLostInterfaceTicks and HeartBeatLostNodeTicks .

 HeartBeatLostInterfaceTicks is 3 missed heartbeats by default and can be configured from 2 to 20 .
The default for HeartBeatLostNodeTicks is 6 and can be anywhere from 2 to 20 .

 http://support.microsoft.com/kb/921181 goes into great depth explaining the algorithms
used to determine heartbeat failures.

 This example sets the heartbeat for the interface to four missed heartbeats, which is about 5 seconds. The
node heartbeat is set to 8, which is about 9.6 seconds.

 1. First, make sure all the cluster nodes are up with the following command:

 Cluster $cluster_name node

 The output should look something like this:

 Listing status for all available nodes:
Node Node ID Status
-------------- ------- ---------------------
MB101 2 Up
MB100 1 Up

c12.indd 341c12.indd 341 12/17/07 3:56:45 PM12/17/07 3:56:45 PM

Part III: Working with PowerShell in a Production Environment

342

 2. Next, configure the heartbeat parameters. The HeartBeatLostInterfaceTicks should be set
to one number higher than the desired missed heartbeats due to the way the algorithm works.

 Cluster $Cluster_Name /priv HeartBeatLostInterfaceTicks=5:DWORD
Cluster $Cluster_Name /priv HeartBeatLostNodeTicks=8:DWORD

 3. Finally, restart the cluster service on both nodes:

 Net stop clussvc
Net start clussvc

 Configuring the Network Interfaces
 One last configuration is to change the private network for cluster use. By default the private adapter
is set for all communications. Because the private interfaces are connected via cross - over cables or a
non - routed network, the interface should be set to handle only internal cluster communication.

 1. The following command changes the private network interface from mixed mode to internal
cluster communications only:

 Cluster network Private /prop Role=1

 2. The network order must also be set to the public interface first, and then the private interface
next. To check the current binding order, run the following command:

 Cluster $Cluster_Name /listnetpri

 The output from the test environment is:

 Listing the priority order of internal networks:

 Network Name

 1 Private
 2 Public

 3. Because this is the incorrect order, the next step is to set the public interface first. Run the
following command:

 cluster $Cluster_Name /SetnetPri:”public,private”

 Now the output shows the correct order:

 Listing the priority order of internal networks:

 Network Name

 1 Public
 2 Private

c12.indd 342c12.indd 342 12/17/07 3:56:45 PM12/17/07 3:56:45 PM

Chapter 12: Working with Continuous Replication

343

 Creating the Clustered Mailbox Server Active Directory Object
 In order to be able to create a cluster, a service account must be created in Active Directory. The process
consists of the following two steps:

 1. This step creates the AD object for the CMS. Because the CMS is not a physical server, it will not
be created automatically. First, create a connection to the ExchangeServers OU and save it in a
variable. Then set some of the variables that will be used later. Next, create a new computer
object and set the common name and sAMaccountName properties. The setInfo() command
commits the in - memory computer object and creates a disabled computer object in AD. To
enable the account, the UserAccountControl property is set to 4096. Finally, the DNSHostName
property is set to the DNS name of the host.

 $objOU=[ADSI] “LDAP://$dc3/ou=ExchangeServers,dc=$dc1,dc=$dc2”
$CMS_Name=”MB100CCR”
$CMS_SAM_Name=”MB100CR$”
$objCMS = $objOU.Create(“Computer”,”cn=$CMS_Name”)
$objCMS.put(“sAMAccountName”, “$CMS_SAM_Name”)
$objCMS.setinfo()
$objCMS.put(“UserAccountControl”,”4096”)
$objCMS.setinfo()
$objCMS.put(“DNSHostName”,$CMS_Name+”.”+$dc1+”.”+$dc2)
$objCMS.setinfo()

 2. Next, assign rights for the cluster service account to the new CMS AD object:

 #Read Permissions
Add-ADPermission -Identity
“cn=$CMS_Name,ou=exchangeservers,dc=exchangeexchange,dc=local” -User exchexch\svc-
mb001 -AccessRights readcontrol -InheritanceType none

#List Contents
Add-ADPermission -Identity
“cn=$CMS_Name,ou=exchangeservers,dc=exchangeexchange,dc=local” -User exchexch\svc-
mb001 -AccessRights listchildren -InheritanceType none

#Read Property
Add-ADPermission -Identity
“cn=$CMS_Name,ou=exchangeservers,dc=exchangeexchange,dc=local” -User exchexch\svc-
mb001 -AccessRights ReadProperty -InheritanceType none

#List Object
Add-ADPermission -Identity
“cn=$CMS_Name,ou=exchangeservers,dc=exchangeexchange,dc=local” -User exchexch\svc-
mb001 -AccessRights ListObject -InheritanceType none

#Control Access
Add-ADPermission -Identity
“cn=$CMS_Name,ou=exchangeservers,dc=exchangeexchange,dc=local” -User exchexch\svc-
mb001 -AccessRights ExtendedRight -InheritanceType none

(continued)

c12.indd 343c12.indd 343 12/17/07 3:56:45 PM12/17/07 3:56:45 PM

Part III: Working with PowerShell in a Production Environment

344

#Write Property - Logon Information
Add-ADPermission -Identity
“cn=$CMS_Name,ou=exchangeservers,dc=exchangeexchange,dc=local” -User exchexch\svc-
mb001 -AccessRights WriteProperty -Properties User-Logon -InheritanceType none

#Write Property - Description
Add-ADPermission -Identity
“cn=$CMS_Name,ou=exchangeservers,dc=exchangeexchange,dc=local” -User exchexch\svc-
mb001 -AccessRights WriteProperty -Properties description -InheritanceType none

#Write Property - sAMAccountName
Add-ADPermission -Identity
“cn=$CMS_Name,ou=exchangeservers,dc=exchangeexchange,dc=local” -User exchexch\svc-
mb001 -AccessRights WriteProperty -Properties sAMAccountName -InheritanceType none

#Write Property - Account Restrictions
Add-ADPermission -Identity
“cn=$CMS_Name,ou=exchangeservers,dc=exchangeexchange,dc=local” -User exchexch\svc-
mb001 -AccessRights WriteProperty -Properties User-Account-Restrictions -
InheritanceType none

#Validated write to DNS host name
Add-ADPermission -Identity
“cn=$CMS_Name,ou=exchangeservers,dc=exchangeexchange,dc=local” -User exchexch\svc-
mb001 -accessrights self -Properties DNS-Host-Name -InheritanceType none

#Validated write to service principal name
Add-ADPermission -Identity
“cn=$CMS_Name,ou=exchangeservers,dc=exchangeexchange,dc=local” -User exchexch\svc-
mb001 -accessrights self -Properties Service-Principal-Name -InheritanceType none

 Installing the Mailbox Server Role on the Primary Node
 At this point the cluster is finished, but Exchange has not yet been installed. Now that all the
prerequisites are complete it is time to install the Clustered Mailbox Server. Again, the CMS is the
 “ floating ” Exchange server that can move between nodes. This is what mail clients, such as Outlook,
connect to. Unattended installs are run from setup.com on the Exchange DVD. There are many
arguments for setup, but only a few are related to installing the CCR cluster.

 The mode parameter can be Install , Uninstall , and RecoverServer . If it is not specified, Install
is assumed.

 The role parameter indicates which server role is installed. Possible values are MB or M for the
Mailbox role.

 The switch /newcms denotes the mailbox install with be a clustered install:

 ./setup.com /mode:install /role:mb /newcms /cmsname:$CMS_Name
/cmsIPAddress:$CMS_IPADDRESS

(continued)

c12.indd 344c12.indd 344 12/17/07 3:56:46 PM12/17/07 3:56:46 PM

Chapter 12: Working with Continuous Replication

345

 Note the ./ before setup.com . This is a security mechanism in PowerShell to prevent malicious code
or an administrator from inadvertently running an executable.

 Installing the Mailbox Server Role on the Secondary Node
 To install the passive node, simply run the setup on the second node:

 ./setup.com /mode:install /role:mb

 Once the passive node install is complete, the next step is to create storage groups and other
configurations. Creating storage groups and other mailbox-configuration tasks is covered in Chapter 8 .

 Installing Standby Continuous Replication (SCR)
 There are a number of requirements to enable an SCR target. An SCR target is a mailbox server that is not
part of a cluster, and it receives a copy of a storage group from another mailbox server. This design is
described at the beginning of this chapter.

❑ SCR targets must be in the same Active Directory domain.

 ❑ SCR targets have a maximum of 50 replicated storage groups. It is a good idea to keep an SCR
source to SCR target at a 1:1 ratio, rather than configuring multiple SCR sources to the same
SCR target.

❑ The database and transaction log paths must match on the SCR source and SCR target. This
includes the drive letters as well.

❑ An SCR target cannot enable LCR on the replicated storage group.

❑ An SCR target configured with CCR or SCC must not have a Clustered Mailbox Server installed.

 There are a few ways to create SCR targets for storage groups. One way is with the New-StorageGroup
cmdlet. This cmdlet is covered in detail in Chapter 8 , but it has been updated to include the ability to
create a storage group enabled for SCR.

 New-StorageGroup -Name < String > [-CircularLoggingEnabled < $true | $false >]
[-Confirm [< SwitchParameter >]] [-CopyLogFolderPath < NonRootLocalLongFullPath >]
[-CopySystemFolderPath < NonRootLocalLongFullPath >] [-DomainController < Fqdn >]
[-HasLocalCopy < $true | $false >] [-LogFolderPath < NonRootLocalLongFullPath >]
[-ReplayLagTime < Nullable >] [-Server < ServerIdParameter >] [-StandbyMachine
 < String >] [-SystemFolderPath < NonRootLocalLongFullPath >] [-TemplateInstance
 < PSObject >] [-TruncationLagTime < Nullable >] [-WhatIf [< SwitchParameter >]]
[-ZeroDatabasePages < $true | $false >]
New-StorageGroup [-Name < String >] -Recovery < SwitchParameter > [-Confirm
[< SwitchParameter >]] [-DomainController < Fqdn >] [-LogFolderPath
 < NonRootLocalLongFullPath >] [-Server < ServerIdParameter >] [-SystemFolderPath
 < NonRootLocalLongFullPath >] [-TemplateInstance < PSObject >] [-WhatIf
[< SwitchParameter >]]

c12.indd 345c12.indd 345 12/17/07 3:56:46 PM12/17/07 3:56:46 PM

Part III: Working with PowerShell in a Production Environment

346

 Enabling existing storage groups is similar to the process for enabling LCR clustering. Both LCR and
SCR use the Enable-StorageGroupCopy cmdlet. The Service Pack 1 versions for these cmdlets contain
three new parameters for SCR:

❑ StandbyMachine

❑ ReplayLagTime

❑ TruncationLagTime

 The StandbyMachine string parameter specifies the name of the mailbox server that will be the SCR
target.

 The ReplayLagTime parameter sets the amount of time the SCR target will wait before replaying log
files from the source. The syntax is Days.Hours:Minutes.Seconds , and has a default setting of 24
hours. The minimum value is 0, however there is an overall minimum of 50 log files that cannot be
changed. Having a lag of 50 log files reduces the chance for the need to reseed the SCR target if the SCR
source experiences a lossy failover.

 The SCR target does not create its database until it receives the first 50 logs.

 The TruncationLagTime parameter sets the amount of time the SCR target waits before truncating log
files that have been replayed into the SCR target ’ s database copy. The syntax is Days.Hours:Minutes
.Seconds and can be set from 0 to 7 days.

 To change ReplayLagTime or TruncationLagTime , SCR must be disabled and re - enabled with the
new values.

 For this example, the Mailbox server role was added to the CA100, the test Client Access Server. Next,
SCR was enabled for the “ First Storage Group ” storage group on the CCR cluster MB100CCR:

 Enable-StorageGroupCopy -Identity “MB100CCR\First Storage Group”
-StandbyServer CA100

 Seeding
 After continuous replication has been enabled, the next step is to seed the passive node. Seeding is the
process of making a complete copy of the source database file. Once the database file has been copied,
the asynchronous log file shipping can start. The database can either be manually copied, or copied
with the Update-StorageGroupCopy cmdlet.

 The following cmdlets are necessary for seeding:

❑ Suspend-StorageGroupCopy

❑ Update-StorageGroupCopy

❑ Resume-StorageGroupCopy

❑ Get-StorageGroupCopyStatus

❑ Get-StorageGroup

c12.indd 346c12.indd 346 12/17/07 3:56:46 PM12/17/07 3:56:46 PM

Chapter 12: Working with Continuous Replication

347

 Seeding can also be required under the following conditions:

❑ Initial seed

❑ Offline defragmentation was run against the source database

❑ Database divergence as a result of failover

❑ The LCR or CCR copy is corrupt

❑ Server loss

 The process for seeding is the same for LCR, CCR, and SCR. First, Suspend-StorageGroupCopy stops
any current log replication. This step may not be necessary for a first - time seed.

 Suspend-StorageGroupCopy -Identity < StorageGroupIdParameter >
[-DomainController < Fqdn >] [-SuspendComment < String >] [-WhatIf < Boolean >]
[-Confirm < Boolean >]

 The SuspendComment is an optional string used for commenting on why the storage group was
suspended. Even though this is an optional parameter, it is a good idea to use it. For example, after a
disaster recovery the suspend comment in the event log can help pinpoint when tasks were done.

 This example suspends all of the storage groups on server MB100:

 Get-StorageGroup -Server mb100 | Suspend-StorageGroupCopy

 To check the status, run Get-StorageGroupCopyStatus :

 Get-StorageGroupCopyStatus [-Identity < StorageGroupIdParameter >]
[-DomainController < Fqdn >] [-DumpsterStatistics < SwitchParameter >]
[-StandbyMachine < String >]
Get-StorageGroupCopyStatus -Server < ServerIdParameter > [-DomainController < Fqdn >]
[-DumpsterStatistics < SwitchParameter >] [-StandbyMachine < String >]

 The Identity and Server parameters allow the results to be scoped to a particular server or storage
group. This cmdlet is detailed in the next section on monitoring continuous replication.

 This example shows the status of the storage group on the mailbox server mb100 that was suspended in
the previous example:

 [PS] C:\ > Get-StorageGroupCopyStatus

Name SummaryCopySt CopyQueueLeng ReplayQueueL LastInspecte
 atus th ength dLogTime
---- ------------- ------------- ------------ ------------
First Storage Group Suspended 0 0 8/17/2007...

c12.indd 347c12.indd 347 12/17/07 3:56:47 PM12/17/07 3:56:47 PM

Part III: Working with PowerShell in a Production Environment

348

 Once replication has been suspended, the Update-StorageGroupCopy cmdlet does the seeding:

 Update-StorageGroupCopy -Identity < StorageGroupIdParameter > [-Confirm
[< SwitchParameter >]] [-DataHostNames < String[] >] [-DeleteExistingFiles
 < SwitchParameter >] [-DomainController < Fqdn >] [-Force < SwitchParameter >]
[-ManualResume < SwitchParameter >] [-StandbyMachine < String >] [-TargetPath
 < LocalLongFullPath >] [-WhatIf [< SwitchParameter >]]

 The new string parameter StandbyMachine is used to seed an SCR target.

 The Update-StorageGroupCopy must be run on the node that will be seeded.

 The switch DeleteExistingFiles tells the cmdlet to delete any existing database and log files after it
successfully copies the files from the source node:

 Get-StorageGroup | Update-StorageGroupcopy -DeleteExistingFiles

 As the reseed copies the files, a progress bar appears. Figure 12 - 4 shows the storage group updating.

Figure 12-4

c12.indd 348c12.indd 348 12/17/07 3:56:47 PM12/17/07 3:56:47 PM

Chapter 12: Working with Continuous Replication

349

 After successfully running the update command on the passive node, replication is automatically
resumed unless the ManualResume switch was included. Running the Get-StorageGroupCopyStatus
after the reseed shows the copy as healthy:

 Get-StorageGroupCopyStatus
Name SummaryCopySt CopyQueueLeng ReplayQueueL LastInspecte
 atus th ength dLogTime
---- ------------- ------------- ------------ -----------
First Storage Group Healthy 5 0 8/17/2007...

 Monitoring
 Let ’ s dig a little deeper into learning how to assess the health of a cluster. A number of cmdlets are used
to discover the health of the server and clustering related services:

❑ Get-StorageGroupCopyStatus

❑ Get-ClusteredMailboxServerStatus

❑ Resume-StorageGroupCopy

❑ Get-StorageGroupCopyStatus

❑ Get-StorageGroup

❑ Stop-ClusteredMailboxServer

 Cluster Status
 The first place to look for server health is the Clustered Mailbox Server (CMS) state. This returns the state
of the cluster and resource ownership:

 Get-ClusteredMailboxServerStatus [-Identity < ServerIdParameter >]
[-DomainController < Fqdn >] [< CommonParameters >]

 The result of Get-ClusteredMailboxServerStatus in the test environment shows that MB100 is the
active node and also has the quorum resource:

 Identity : mb100ccr
ClusteredMailboxServerName : MB100CCR.ExchangeExchange.local
State : Online
OperationalMachines : {MB100 < Active, Quorum Owner > , MB101}
FailedResources : {}
IsValid : True
ObjectState : Unchanged

 To show how the cluster would look offline, use the Stop-ClusteredMailboxServer cmdlet to shut
down the cluster. It is important to use PowerShell cmdlets, not the Cluster Administrator utility to
perform these actions. The Cluster Administrator utility is not Exchange aware. The PowerShell cmdlets
perform additional checks to ensure the passive node is up to date. Cluster Administrator does not
perform any of these checks and could cause problems. Also, the cmdlets allow an administrator to
comment on the failover reason.

c12.indd 349c12.indd 349 12/17/07 3:56:47 PM12/17/07 3:56:47 PM

Part III: Working with PowerShell in a Production Environment

350

 Stop-ClusteredMailboxServer -Identity < MailboxServerIdParameter >
-StopReason < String > [-DomainController < Fqdn >] [< CommonParameters >]

 The StopReason string parameter is required, and should provide an explanation as to why the
administrator is taking the cluster offline. By default, the cmdlet also requires confirmation to continue.

 After running the Stop-ClusteredMailboxServer cmdlet, the status shows the state is Offline and
in a Valid state:

 [PS] C:\ > Stop-ClusteredMailboxServer -StopReason “Server Maintenance”
-Identity MB100CCR

Confirm
Are you sure you want to perform this action?
Clustered mailbox server “MB100CCR” is stopping with stop reason “Server
Maintenance”.
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is “Y”):y

FailedToOffline :
Identity : mb100ccr
State : Offline
IsValid : True
ObjectState : Changed

 Replication Status
 Another area for measuring cluster health is looking at the replication status. The
Get-StorageGroupCopyStatus cmdlet was covered briefly in the section on seeding. As shown before,
the cmdlet returns a brief snapshot of the current replication state:

 Get-StorageGroupCopyStatus
Name SummaryCopySt CopyQueueLeng ReplayQueueL LastInspecte
 atus th ength dLogTime
---- ------------- ------------- ------------ -----------
First Storage Group Healthy 5 0 8/17/2007...

 Piping the cmdlet to format-list (fl) gives more detail about the cluster server health. The key fields
are SummaryCopyStatus , CopyQueueLength , ReplayQueueLength , and LastInspectedLogTime .
Looking at the last log parameters shows the log shipping is current by comparing the log number. If the
 CopyQueueLength is more than 5 generations behind or the ReplayQueueLength is more than 20 logs
behind, the reason should be investigated and corrected. In addition, the LastInspectedLogTime
should be recent.

 New in Service Pack 1 is the DumpsterStatistics switch parameter. This returns additional
information about the transport dumpster. For example, in the test environment, running the following
cmdlet:

 Get-ClusteredMailboxServerStatus -DumpsterStatistics | fl

c12.indd 350c12.indd 350 12/17/07 3:56:48 PM12/17/07 3:56:48 PM

Chapter 12: Working with Continuous Replication

351

 generates the following output:

 Identity : mb100ccr\First Storage Group
StorageGroupName : First Storage Group
SummaryCopyStatus : Healthy
NotSupported : False
NotConfigured : False
Disabled : False
ServiceDown : False
Failed : False
Initializing : False
Resynchronizing : False
Seeding : False
Suspend : False
CCRTargetNode : MB101
FailedMessage :
SuspendComment :
CopyQueueLength : 0
ReplayQueueLength : 0
LatestAvailableLogTime : 8/25/2007 2:51:19 PM
LastCopyNotificationedLogTime : 8/25/2007 2:51:19 PM
LastCopiedLogTime : 8/25/2007 2:51:19 PM
LastInspectedLogTime : 8/25/2007 2:51:19 PM
LastReplayedLogTime : 8/25/2007 2:51:19 PM
LastLogGenerated : 113
LastLogCopyNotified : 113
LastLogCopied : 113
LastLogInspected : 113
LastLogReplayed : 113
LatestFullBackupTime : 8/25/2007 9:34:28 AM
LatestIncrementalBackupTime :
SnapshotBackup : False
IsValid : True
ObjectState : Unchanged
DumpsterServersNotAvailable : {}
DumpsterStatistics : {CA100(8/18/2007 8:38:06 PM;1;2450MB)}

 To obtain information about an SCR target, the StandbyMachine string parameter must be included
with the name of the SCR target.

 Service Pack 1 introduces the Test-ReplicationHealth cmdlet. The Test-ReplicationHealth
cmdlet incorporates tests for all parts of the replication process.

 Test-ReplicationHealth [-ActiveDirectoryTimeout < Int32 >] [-Confirm
[< SwitchParameter >]] [-DomainController < Fqdn >] [-MonitoringContext
 < $true | $false >] [-TransientEventSuppressionWindow < UInt32 >] [-WhatIf
[< SwitchParameter >]]

 When set to $true , the MonitoringContext parameter includes extra information in the cmdlet ’ s
output.

c12.indd 351c12.indd 351 12/17/07 3:56:48 PM12/17/07 3:56:48 PM

Part III: Working with PowerShell in a Production Environment

352

 In the following example the cmdlet is run from the active node on the test mailbox cluster:

 Test-ReplicationHealth -MonitoringContext:$true

 to produce the following:

 Server Check Result Error
------ ----- ------ -----
MB100 PassiveNodeUp Passed
MB100 ClusterNetwork Passed
MB100 QuorumGroup Passed
MB100 FileShareQuorum Passed
MB100 CmsGroup Passed
MB100 NodePaused Passed
MB100 DnsRegistrationStatus Passed
MB100 ReplayService Passed
MB100 DBMountedFailover Passed

Events : {Source: MSExchange Monitoring ReplicationHealth
 Id: 10000
 Type: Success
 Message: No monitoring errors occurred. All Exchange
 replication health checks passed.}
PerformanceCounters : {}

 Performance Monitor
 Another way to monitor the system is through Performance Monitor. The following example shows the
script pattern that can be used to retrieve any counter. The first thing to do is the counter, object,
instance, and server parameters. The script sets the variables to get the CopyQueueLength on the passive
node. To get information about replication, the server must be set to the passive node. This example also
shows how to make the output overwrite itself, instead of continually scrolling.

 $Current = $host.UI.RawUI.Get_CursorPosition()
$Object=”MSExchange Replication”
$Counter=”CopyQueueLength”
$Instance=”First Storage Group”
$Passive_Node=”MB101”

$perf = New-Object System.diagnostics.performancecounter($Object, $Counter,
$Instance, $Passive_Node)

While (1)
{
 $perf.RawValue
 Start-Sleep -seconds 1
 $host.UI.RawUI.Set_CursorPosition($Current)
}

c12.indd 352c12.indd 352 12/17/07 3:56:48 PM12/17/07 3:56:48 PM

Chapter 12: Working with Continuous Replication

353

 Failover Types
 There are two types of failover in Exchange Server 2007: planned and unplanned. The various methods
of continuous replication have different recovery strategies. This section examines the difference
between the two, and how to control failover features. The following cmdlets are used:

❑ Move-ClusteredMailboxServer

❑ Set-MailboxServer

❑ Restore-StorageGroupCopy

❑ Mount-Database

❑ Dismount-Database

 The continuous replication model uses asynchronous log shipping to keep the passive node up to date.
The Microsoft Exchange Replication Service on the passive node is responsible for copying the 1MB logs
as they are created on the active node. Because the passive node is always at least one log file behind (the
active log) Exchange implemented Lost Log Resiliency (LLR). LLR delays the active node from
committing the log files as they are closed. This allows an administrator to mount the passive node
without all of the log files, and not cause divergence. Divergence is when the active and passive nodes
have different copies of a database. Once the nodes have diverged, the only remedy is to reseed the
database. When a failover occurs and one or more log files are missing, this is called a lossy failover. If all
the logs are able to be copied to the passive node, this is called a lossless failover.

 During a planned (administrative) failover, all of the logs are copied to the passive node. This means that
a planned failover is always lossless.

 The transport dumpster feature helps minimize loss of mail during a lossy failover. The transport
dumpster holds on to a limited amount of mail. After a lossy failover, the mailbox server then requests
redelivery of messages to minimize any data loss from the missing log files. The mail server just deletes
any messages that it already has committed. Keep in mind, this only covers items that flow through the
Hub transport servers. Other items, such as updating personal contacts, tasks, and appointments, or
flagging a message will not be redelivered and are lost. The transport dumpster feature was only
available to CCR clusters in the release version of Exchange Server 2007. Service Pack 1 extends the
feature for LCR clusters as well.

 Failover in Local Cluster Replication
 LCR provides a quick recovery method when there is trouble with the active database and log files. It is
a manual process to bring the database back online. The actual recovery steps may differ depending on
what the cause of the failure is and what state the production database and log files are in.

 The actual steps may change based upon the cause of the failure, and the condition of the active database
and log files. The general recovery process starts with dismounting the active database. The dismount is
performed using the Dismount-Database cmdlet. For example:

 Dismount-Database -Identity “MB100ccr\first storage group\mailbox database”

c12.indd 353c12.indd 353 12/17/07 3:56:49 PM12/17/07 3:56:49 PM

Part III: Working with PowerShell in a Production Environment

354

 Once the database has dismounted, the LCR passive copy needs to be activated, and the LCR copy
stopped. The Restore-StorageGroupCopy cmdlet does both, and leaves the storage group and
database paths unchanged. Leaving the paths unchanged is preferred to minimize confusion as to where
the active copy should be. In this scenario, it is necessary to move the files, or mount the passive node
LUNs to replace the failed active ones.

 Restore-StorageGroupCopy -Identity “MB100ccr\first storage group\mailbox database”

 If it is not possible to recover by moving the files or swapping LUNs, then the
Restore-StorageGroupCopy cmdlet should include the ReplaceLocations option to alter the
database and system paths:

 Restore-StorageGroupCopy -Identity “MB100ccr\first storage group\mailbox
database” - ReplaceLocations:$true

 Finally, the database can be mounted with the Mount-Database cmdlet:

 Mount-Database -Identity “MB100ccr\first storage group\mailbox database”

 It is easy to see how the addition of LCR can greatly reduce the downtime due to disk failure or
corruption. LCR can be used to alter the standard backup process because the first level of recovery is
online disk. A company may choose to have short SLAs for database recovery, but use longer SLAs for
server failures.

 Failover in Continuous Cluster Replication
 Unlike LCR, CCR has a fully automated unplanned failover process. There are administrative settings
that tune the failover process. Because an unplanned failover may have data loss, it is possible to set the
rules under which the passive node will mount databases. This logic is tuned with the
 AutoDatabaseMountDial parameter. There are three possible settings:

❑ Lossless

 ❑ GoodAvailability

❑ BestAvailability

 The Lossless setting prevents the passive node from mounting if any logs are missing. In most
circumstances the system will need to wait until the failed node is back online and the missing logs can
be copied to the passive node. This setting allows for an administrator to explicitly decide when to bring
a failed system online.

 GoodAvailability sets the copy queue to three logs and BestAvailability is six logs.

 The next tuning parameter is ForceDatabaseMountAfter . The ForceDatabaseMountAfter setting
forces the database to mount after a specified period of time. For example, if
 ForceDatabaseMountAfter is set to one hour, if the passive node fails to copy all required logs the
database will mount with some data loss.

c12.indd 354c12.indd 354 12/17/07 3:56:49 PM12/17/07 3:56:49 PM

Chapter 12: Working with Continuous Replication

355

 Both of these parameters are configured with the Set-MailboxServer cmdlet:

 Set-MailboxServer -Identity < MailboxServerIdParameter > [-AutoDatabaseMountDial
 < Lossless | GoodAvailability | BestAvailability >] [-ClusteredStorageType
 < Disabled | NonShared | Shared >] [-Confirm [< SwitchParameter >]]
[-DomainController < Fqdn >] [-FolderLogForManagedFoldersEnabled < $true |
$false >] [-ForcedDatabaseMountAfter < Unlimited >]
[-JournalingLogForManagedFoldersEnabled < $true | $false >] [-Locale
 < MultiValuedProperty >] [-LogDirectorySizeLimitForManagedFolders < Unlimited >]
[-LogFileAgeLimitForManagedFolders < EnhancedTimeSpan >]
[-LogFileSizeLimitForManagedFolders < Unlimited >] [-LogPathForManagedFolders
 < LocalLongFullPath >] [-ManagedFolderAssistantSchedule < ScheduleInterval[] >]
[-MAPIEncryptionRequired < $true | $false >] [-MessageTrackingLogEnabled < $true
| $false >] [-MessageTrackingLogMaxAge < EnhancedTimeSpan >]
[-MessageTrackingLogMaxDirectorySize < Unlimited >]
[-MessageTrackingLogMaxFileSize < Unlimited >] [-MessageTrackingLogPath
 < LocalLongFullPath >] [-MessageTrackingLogSubjectLoggingEnabled < $true |
$false >] [-RedundantMachines < MultiValuedProperty >] [-ReplicationNetworks
 < PrivateOnly | PrivateThenMixed | AllNetworks >]
[-RetentionLogForManagedFoldersEnabled < $true | $false >]
[-SubjectLogForManagedFoldersEnabled < $true | $false >]
[-SubmissionServerOverrideList < MultiValuedProperty >] [-WhatIf
[< SwitchParameter >]]
Set-MailboxServer [-AutoDatabaseMountDial < Lossless | GoodAvailability |
BestAvailability >] [-ClusteredStorageType < Disabled | NonShared | Shared >]
[-Confirm [< SwitchParameter >]] [-DomainController < Fqdn >]
[-FolderLogForManagedFoldersEnabled < $true | $false >]
[-ForcedDatabaseMountAfter < Unlimited >] [-Instance < MailboxServer >]
[-JournalingLogForManagedFoldersEnabled < $true | $false >] [-Locale
 < MultiValuedProperty >] [-LogDirectorySizeLimitForManagedFolders < Unlimited >]
[-LogFileAgeLimitForManagedFolders < EnhancedTimeSpan >]
[-LogFileSizeLimitForManagedFolders < Unlimited >] [-LogPathForManagedFolders
 < LocalLongFullPath >] [-ManagedFolderAssistantSchedule < ScheduleInterval[] >]
[-MAPIEncryptionRequired < $true | $false >] [-MessageTrackingLogEnabled < $true
| $false >] [-MessageTrackingLogMaxAge < EnhancedTimeSpan >]
[-MessageTrackingLogMaxDirectorySize < Unlimited >]
[-MessageTrackingLogMaxFileSize < Unlimited >] [-MessageTrackingLogPath
 < LocalLongFullPath >] [-MessageTrackingLogSubjectLoggingEnabled < $true |
$false >] [-RedundantMachines < MultiValuedProperty >] [-ReplicationNetworks
 < PrivateOnly | PrivateThenMixed | AllNetworks >]
[-RetentionLogForManagedFoldersEnabled < $true | $false >]
[-SubjectLogForManagedFoldersEnabled < $true | $false >]
[-SubmissionServerOverrideList < MultiValuedProperty >] [-WhatIf
[< SwitchParameter >]]

 Some interesting parameters related to continuous clustering include:

❑ AutoDatabaseMountDial

❑ ForcedDatabaseAfterMount

❑ ReplaceLocations

❑ ReplicationNetworks

c12.indd 355c12.indd 355 12/17/07 3:56:49 PM12/17/07 3:56:49 PM

Part III: Working with PowerShell in a Production Environment

356

 There are a number of scenarios when an administrator must take manual actions to bring the passive
node online with the Restore-StorageGroupCopy cmdlet.

 Some examples are:

❑ In a CCR cluster the AutoDatabaseMountDial setting is lossless

❑ In a CCR cluster the database fails to automatically mount

❑ To bring the passive copy online in an LCR cluster

❑ To bring the SCR target online in an SCR cluster

 The syntax of the Restore-StorageGroupCopy cmdlet is:

 Restore-StorageGroupCopy -Identity < StorageGroupIdParameter > [-Confirm
[< SwitchParameter >]] [-DomainController < Fqdn >] [-Force < SwitchParameter >]
[-ReplaceLocations < SwitchParameter >] [-StandbyMachine < String >] [-WhatIf
[< SwitchParameter >]]

 The ReplaceLocations switch is used in an LCR configuration only. This switch stops replication and
changes the storage group and database paths to the LCR copy.

 New in Service Pack 1 is the StandbyMachine string parameter. This parameter specifies the name of
the SCR host to activate.

 The Force switch defaults to $true if not specified. The Force switch must be present to activate an
SCR target when the SCR source is not available.

 After the Restore-StorageGroupCopy cmdlet completes, the administrator can mount the database
with the Mount-Database cmdlet.

 The syntax for Mount-Database is:

 Mount-Database -Identity < DatabaseIdParameter > [-AcceptDataLoss
 < SwitchParameter >] [-Confirm [< SwitchParameter >]] [-DomainController
 < Fqdn >] [-Force < SwitchParameter >] [-WhatIf [< SwitchParameter >]]

 New in Service Pack 1 is the AcceptDataLoss switch. This switch causes the cmdlet to accept data loss
caused by missing committed log files.

 Putting the steps together, this is an example of making the passive node viable for mounting with the
 Restore-StorageGroupCopy cmdlet. To make the passive node active, the database is then mounted
with Mount-Database . If there is data loss or the SCR source is unavailable, the Force parameter is
required to override the warnings.

 Restore-StorageGroupCopy -Identity “First Storage Group”
Mount-Database -Identity “MB101\First Storage Group\Mailbox Database”

c12.indd 356c12.indd 356 12/17/07 3:56:50 PM12/17/07 3:56:50 PM

Chapter 12: Working with Continuous Replication

357

 One shortcut is the addition of a new script located by default at C:\program files\Microsoft\
Exchange Server\Scripts . The script ’ s name is GetSCRSources.ps1 . Given an SCR target,
the script will output all of the SCR sources it is a target for. For example, instead of running multiple
Restore-StorageGroupCopy cmdlets:

 Restore-StorageGroupCopy -Identity “mb100CCR\First Storage Group”
-StandbyMachine ca100 -force

Restore-StorageGroupCopy -Identity “mb100CCR\Second Storage Group”
-StandbyMachine ca100 -force

Restore-StorageGroupCopy -Identity “mb100CCR\Third Storage Group”
-StandbyMachine ca100 -force

 you can use the following:

 GetSCRSources | Restore-StorageGroupCopy -StandbyMachine $env:ComputerName
-Force

 The steps are the same for a single target SCR or a clustered target SCR. The failback steps are different,
and are covered in the next section.

 Another key new feature introduced in Service Pack 1 is the ability to replicate transaction log files over
different networks. In the RTM version, only the public interface was used during normal replication.
This setting is controlled with the ReplicationNetworks parameter. The parameter can be set to
 PrivateOnly , PrivateThenMixed , or AllNetworks :

 Set-MailboxServer -Identity mb100ccr -ReplicationNetworks PrivateThenMixed

 If the mailbox servers are connected with a cross - over cable, this can save significant traffic from the
public network.

 Failover in Standby Continuous Replication
 Like LCR, Standby Continuous Replication is not an automated failover. SCR is meant for significant
failures, not routine maintenance or other smaller outages. The steps are very similar to LCR, except the
recovery is to a standby server using the database portability feature of Exchange Server 2007. Because
the server name changes, it impacts all Outlook clients. Office Outlook 2007 clients will automatically
reconfigure their profiles with Autodiscover, but older clients may need to be manually updated.
The process is different if failing to a single server or a CCR cluster. First are the steps used to activate the
passive node on a single SCR target.

 The high - level steps are:

 1. Dismount the source database

 2. Validate the passive node database and log files

 3. Run the Restore-StorageGroupCopy cmdlet to allow the target to mount the database

 4. Run the Move-StorageGroupCopyPath cmdlet to update the storage group path

c12.indd 357c12.indd 357 12/17/07 3:56:50 PM12/17/07 3:56:50 PM

Part III: Working with PowerShell in a Production Environment

358

 5. Run the Move-DatabasePath cmdlet to update the database path

 6. Mark the database for AllowFileRestore with the Set-MailboxDatabase cmdlet

 7. Mount the database on the SCR target

 8. Move the users ’ mailbox configuration with the Move-Mailbox cmdlet

 9. On clustered SCR sources, clear the local CMS configuration with Setup.com

 The SCR target should be configured with an empty storage group and database, with paths that will not
conflict with the SCR target paths. These will be the storage group and database used for the portability
recovery.

 In this example scenario, the CMS will failover to the standby server ca100:

 1. The first step in activating the SCR target is to dismount the SCR source database on mb100ccr:

 Dismount-Database -Identity “mb100ccr\first storage group\mailbox database”

 2. Next, run the Restore-StorageGroupCopy cmdlet to allow the SCR target ’ s database copy to
be mounted. This step will try to copy any remaining log files, and also report on the data loss if
applicable. If the storage group prefix is different between the SCR source and SCR target, run
 Eseutil in recovery mode. The prefix, in this case E00, represents the first storage group.
The second storage group will be E01, and so forth. Because the SCR target may have different
servers as SCR sources, the storage group numbers (and prefixes) will not match. In this
example the log prefix is E00 :

 Eseutil /r E00

Restore-StorageGroupCopy -Identity “mb100ccr\first storage group”
-StandbyMachine ca100

 3. Now the database and system paths must be updated in Active Directory with the new location
on the SCR target server. This is accomplished with the Move-StorageGroupPath and
 Move-DatabasePath cmdlets:

 Move-StorageGroupPath -Identity ca100\SG1Temp -SystemFolderPath
“C:\Program files\Microsoft\Exchange\mailbox\First Storage Group”
-LogFolderPath “C:\Program files\Microsoft\Exchange\mailbox\First Storage
Group” -ConfigurationOnly

Move-DatabasePath -Identity “ca100\SG1Temp\Mailbox Database” -EdbFilePath
“C:\Program files\Microsoft\Exchange\mailbox\First Storage Group” -
ConfigurationOnly

 4. Before the database can be mounted, it must be enabled with the “ This database can be
overwritten by a restore ” property on the database. The following cmdlet sets this on the
SCR target database:

 Set-MailboxDatabase -Identity “ca100\SG1Temp\Mailbox Database”
-AllowFileRestore:$true

c12.indd 358c12.indd 358 12/17/07 3:56:50 PM12/17/07 3:56:50 PM

Chapter 12: Working with Continuous Replication

359

 5. Finally, mount the database:

 Mount-Database -Identity “ca100\SG1Temp\Mailbox Database”

 6. Before clients can access the database, they must be re - homed to the SCR target. The following
example moves all of the mailboxes from the SCR source to the SCR target. Note the example
prevents system accounts from being included.

 Get-MailboxStatistics -Database mb100ccr\first storage group\mailbox database
|where {$_.ObjectClass -NotMatch ‘ (SystemAttendantMailbox | ExOleDbSystemMailbox)’}
| Move-Mailbox -ConfigurationOnly -TargetDatabase
“ca100\Sg1Temp\Mailbox Database”

 For scenarios with the SCR source as an SCC or CCR cluster, a few additional steps need to be run in
order to prevent any conflicts when the failed source is brought online.

 In this example the CCR cluster, mb100ccr, is made of an active node (mb100) and the passive node
(mb101). Bring up mb100 first, then mb101. The Clustered Mailbox Server will remain offline to prevent
duplicate names on the network.

 1. On the node that owns the resource group for the Clustered Mailbox Server, run setup to clear
the CMS and its resources. The following command is run on mb100:

 Setup.com /ClearLocalCMS /CMSName:mb100ccr

 2. Verify with Cluster Administrator that all cluster server resources have been removed. These are
all of the steps needed; however, all of the configuration information must replicate through
Active Directory before all clients can access the SCR target.

 Failback
 Failback is the process of returning servers to their original state after a failure. It is equally important to
understand and practice as failing over. Each type of replication has its own methods of failback. This
section introduces the following cmdlets that relate to failback:

❑ Move-ClusteredMailboxServer

❑ Set-MailboxServer

❑ Restore-StorageGroupCopy

❑ Mount-Database

❑ Dismount-Database

 Failback in Local Continuous Replication
 The method you use to return to the original configuration for LCR depends on how the LCR failover
was performed. In the scenario where the original paths were kept and the underlying storage was
switched, recovery consists of fixing passive storage and re - enabling LCR.

c12.indd 359c12.indd 359 12/17/07 3:56:50 PM12/17/07 3:56:50 PM

Part III: Working with PowerShell in a Production Environment

360

 If the paths were reconfigured during passive node activation, then the same process can be used to
revert back to the original storage. The original storage is brought back online and is LCR enabled. From
this point, the process is the same as in the original failover.

 The steps previously discussed are:

 1. Run Dismount-Database on the active database

 2. Run Restore-StorageGroupCopy to allow the passive node to mount the database

 3. Mount the database on the passive copy

 Failback in Cluster Continuous Replication
 Failing back from a failure in a CCR is simply performing an administrative failover. Before the failover,
the passive node may need to be reseeded to bring the node to current state.

 In the event that a server needs to be rebuilt, there are some additional steps to follow. On the new
server, install the mailbox server role on. Next run setup.com in recovery mode:

 Setup.com /recoverCMS /CMSName mb100ccr /CMSIPaddress:192.168.1.80

 For CCR, reseed the node to bring the node to current state. Once replication is healthy, an
administrative failover will return the original node back as it was before failure.

 Failback in Standby Continuous Replication
 Once the SCR source is brought back online, the Clustered Mailbox Server can return to the original
cluster. At this point, the two original nodes are clustered without a CMS, and they have the mailbox
role installed.

 1. The first step is to dismount the database on the SCR target cluster:

 Dismount-Database -Identity “ca100\SG1Temp\Mailbox Database”

 2. Next, use Restore-StorageGroupCopy to prepare the storage group for mounting on the SCR
source cluster. The force parameter is not used because the SCR source is available.

 Restore-StorageGroupCopy -Identity ca100\SG1Temp -StandbyMachine mb100

 3. The CMS on ca100 should be stopped using Stop-ClusteredMailboxServer :

 Stop-ClusteredMailboxServer -Identity mb100ccr -StopReason “Server Failback”

 4. Once the CMS has stopped, start recovery on mb100 with the setup command:

 Setup.com /RecoverCMS /CMSName:mb100ccr /CMSIPAddress:192.168.1.80

c12.indd 360c12.indd 360 12/17/07 3:56:51 PM12/17/07 3:56:51 PM

Chapter 12: Working with Continuous Replication

361

 5. For CCR clusters storage group replication is suspended at this point. If the passive node does
not contain a good copy of the database and logs, then reseed with Update-StorageGroupCopy
from the passive node (mb101).

 Update-StorageGroupCopy -Identity “mb100ccr\First Storage Group”
-DeleteExistingFiles

 6. Reconfigure the backup site to reestablish ca100 as the SCR target. The cluster configuration
information needs to be removed from ca100.

 Setup.com /ClearLocalCMS /CMSName mb100ccr

 7. Verify the cluster information was removed successfully using Cluster Administrator. Re - enable
ca100 as the SCR target.

 Enable-StorageGroupCopy -Identity “mb100ccr\First Storage Group”
-StandbyMachine ca100

 At this point the original cluster is running and SCR is available for site resiliency.

 Summary
 This chapter detailed how to add high availability by using new features in Exchange Server 2007. It is
important to understand that high availability is much more than adding CCR, LCR, or SCR. High
availability is only achieved by process, people, and technology. In fact, because of the complexity of
these high - availability solutions, companies without good processes and people may actually find less
availability after implementing clusters.

 Microsoft has made continual updates to Exchange to make it easier to manage and configure. Service
Pack 1 addressed a large number of customer concerns with major feature improvements to the GUI as
well as PowerShell. They have also addressed the changing demands of companies that made email
grow from a little - used application to a business - critical application while making high availability
more affordable.

c12.indd 361c12.indd 361 12/17/07 3:56:51 PM12/17/07 3:56:51 PM

c12.indd 362c12.indd 362 12/17/07 3:56:51 PM12/17/07 3:56:51 PM

 Single Copy Clusters

 Single Copy Clusters (SCCs) are Microsoft Exchange Server 2007 ’ s traditional approach to active/
passive clustering of mailboxes. In this release of Exchange only active/passive configurations are
supported. The active/active role is no longer supported; one passive node is always required in a
cluster. Also, the Mailbox role is the only role supported for deployment in a Microsoft Cluster
Service (MSCS) configuration. Clustering mailboxes, through SCC, provides a higher level of
uptime and availability to end users. If there is a hardware failure on one of the nodes in the
cluster, any resources that were on that node are relocated to another node in the cluster.
Individual nodes can be taken down for patching without disrupting the overall application
uptime to the client. This does not provide a 100 percent uptime guarantee, but will provide a
higher level of service over a standalone mailbox server. Clients will still incur a slight pause in
service while the resources are moved to another node, but to most users this will be nearly
transparent.

 One of the primary goals of this chapter is to demonstrate how to use PowerShell to interact with
native operating system commands to accomplish automated tasks with the use of PowerShell
variables.

 SCCs reside as clustered resources within a traditional Microsoft Cluster Server (MSCS)
environment. To guarantee a successful SCC deployment within MSCS, there are several
prerequisite steps that must be followed. This first half of this chapter focuses on using
PowerShell to install the various components of an MSCS cluster and then to perform the
actual Exchange SCC install.

 The second half of this chapter focuses on Exchange - specific resource management within an SCC
environment. The Exchange administrator will learn how to use PowerShell to move and manage
resources, as well as how to check the health of an SCC cluster.

 In this chapter the following topics are discussed:

 Automating a Single Copy Cluster (SCC) install

 Resource management

❑

❑

c13.indd 363c13.indd 363 12/17/07 3:57:59 PM12/17/07 3:57:59 PM

Part III: Working with PowerShell in a Production Environment

364

 Automating an MSCS Install
 Installation of an MSCS cluster is possible through the use of PowerShell and some of the various
Microsoft command - line programs. The following sections discuss how you can use PowerShell with
these programs to create scripts to aid in the deployment of MSCS clusters, one of the prerequisites of an
SCC cluster. The following topics are covered:

 Hardware requirements

 Software requirements

 Microsoft Server Cluster installation

 Primary node installation

 Secondary node installation

 Hardware Requirements
 To deploy any cluster successfully, all of your equipment must be on the hardware compatibility list. To
verify your hardware configuration visit windowsservercatalog.com . For testing purposes, this
chapter focuses on deploying a two - node active/passive configuration. In addition to the standard
requirements for Microsoft Exchange Server 2007, the following additional hardware is required:

 One additional network adapter on each server to act as the heartbeat.

 Shared disks accessible by both nodes. This can be either fibre channel or iSCSI. Each logical
disk should reside on a LUN or physical spindles. This is necessary for disk I/O and for fault
tolerance.

 Both servers should be the same model, chip set, and have the same components.

 Software Requirements
 Before installing MSCS there are several additional items that the Exchange administrator needs to take
into consideration, such as specific software versions, additional network requirements, and logical
placement within Active Directory. Figure 13 - 1 shows an example of an SCC configuration of a two - node
network. The following list describes the software requirements for a two - node MSCS deployment:

 Because the SCC cluster uses Microsoft Server Clustering Service (MSCS), it is necessary to use
Microsoft Windows 2003 Server, or R2, Enterprise edition or Data Center edition. Clustering is
not available on the Web or Standard editions.

 SCC clusters can be in different data centers, but must reside within the same AD site.

 Microsoft Exchange Server 2007 Enterprise is required for SCC clusters. If you are deploying
standard, then Local Continuous Clustering (LCR) is the only available clustering option.

 Four IP addresses on the production network. One for each server, one for the MSCS cluster
name, and one address for the Clustered Mailbox Server.

 Two IP addresses for heartbeat, or private network, communication: one for each node of
the cluster.

 IIS must be installed on both nodes.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

c13.indd 364c13.indd 364 12/17/07 3:58:00 PM12/17/07 3:58:00 PM

Chapter 13: Single Copy Clusters

365

 In addition you must verify that both nodes are running the same firmware on all hardware components
and are at the same patch level and service pack.

 Running other versions of Exchange (2000 or 2003), Microsoft SQL Server, or non - Mailbox roles is not
supported. Also, clustering on a domain controller is not supported.

Figure 13-1

Switch A Switch B

Node BNode A

Storage System

Active Path Passive Path

 Microsoft Server Cluster Installation
 When installing the MSCS cluster services, there are a lot of steps to implementing the cluster. These
steps can be broken down into the following:

1. Create the cluster service account

2. Create the cluster DNS record

c13.indd 365c13.indd 365 12/17/07 3:58:00 PM12/17/07 3:58:00 PM

Part III: Working with PowerShell in a Production Environment

366

3. Configure the network

4. Prepare the shared disks

5. Install the cluster software

 Chapter 4 discussed using PowerShell to create users. The service account for the cluster service needs
to be a member of the domain. If the installation of the cluster is done by an administrator that is not the
service account, the service account will be added to the local administrators group on each node during
the installation process. Using this PowerShell script creates a new Organizational Unit (OU) in the
Exchangeexchange domain, creates a new user within that OU, and sets her password to never. The final
portion also sets the user password:

$DC1=”exchangeexchange”
$DC2=”local”
$DC3=$DC1+”.”+$DC2+”:389”
$Service_Account_OU=”SVC_Accounts”
$User=”svc-mb002”
$Password=”P@55w0rd”
$objDomain = [ADSI]”LDAP://$DC3/dc=$DC1,dc=$DC2”
$objOU = $objDomain.Create(“organizationalUnit”, “ou=$Service_Account_OU”)
$objOU.SetInfo()
$objOU = [ADSI]”LDAP://$DC3/ou=$Service_Account_OU,dc=$DC1,dc=$DC2”
$objUser = $objOU.Create(“user”, “cn=$User”)
$objUser.Put(“sAMAccountName”, “$User”)
$objUser.SetInfo()
$objUser.SetPassword(“$Password”)
$objUser.SetInfo()
$objUser.Put(“UserAccountControl”, “66048”)
$objUser.SetInfo()

 Using PowerShell, the script connects to the LDAP service on the domain controller via ADSI and creates
a variable ($objDomain) for the domain name. $DC1 is the domain name. $DC2 is the domain suffix.
 $DC3 is the complete name of the domain taken from $DC1 and $DC2 where the user will be created.

 Next the script creates a new variable for the OU ($objOU) , creates the new OU called SVC_Accounts ,
and then sets the info.

 Setting the OU creates the new object in Active Directory.

 From there the script creates a new variable ($objUser) , takes the existing variable of the OU
 ($objOU) , and creates a user named svc-mb002 , taken from the ($User) variable, in the new OU.

 The $objUser.SetInfo() creates the object in AD.

 The next step sets the user ’ s password with the $objUser.SetPassword . The password is set from the
 ($Password) variable. This password is used later in the cluster installation.

 The user ’ s password is set to never expire by setting the UserAccountControl to 66048 .

 For more information on User Account Control settings see support.microsoft.com/kb/305144 .

c13.indd 366c13.indd 366 12/17/07 3:58:00 PM12/17/07 3:58:00 PM

Chapter 13: Single Copy Clusters

367

 Verify that the user account exists using Active Directory Users and Computers (dsa.msc) or through
 dsquery , as shown in Figure 13 - 2 .

Figure 13-2

 Now that the service account has been created, the next step is to create the DNS record for the MSCS
cluster. Also if your DNS infrastructure does not allow for the dynamic updates of ‘ A ’ records, then you
also use this script to create the DNS record for the Clustered Mailbox Server.

 To use DNS scripting, the Windows support tools need to be installed on the server that will run
the script. The support tools are located in the \Support\Tools directory on the install CD. The
following script will connect to the DNS server, contact the DNS zone specified, and create the new ‘ A ’
record. This is necessary because one of the required resources in an MSCS cluster is the cluster name,
which is dependent upon the also required cluster IP address.

$DNS_Server=”exchangeexchange.local”
$DNS_Zone=”exchangeexchange.local”
$Cluster_Name=”MB002MSCS”
$Cluster_IP=”2.4.191.90”
dnscmd $DNS_Server /recordadd $DNS_Zone $Cluster_Name a $Cluster_IP

c13.indd 367c13.indd 367 12/17/07 3:58:01 PM12/17/07 3:58:01 PM

Part III: Working with PowerShell in a Production Environment

368

 This script can be divided into three pieces. The first is the command (dnscmd) . This is the executable
that will perform the work based upon the given parameters, shown in Figure 13 - 3 .

Figure 13-3

 The second section, as shown next, is for the location of the DNS server ($DNS_Server) and the zone
 ($DNS_Zone) that the record will be added to:

Insert dns server /recordadd dns zone here

 The last section includes the name ($Cluster_Name) and the IP address ($Cluster_IP) of the ‘ A ’
record that will be created. (See Figure 13 - 4 .) At this point, you may be wondering why the DNS record
and the user have been created from the command line and not through the GUI. At the end of this
chapter we bring all of these separate scripts together to show how using PowerShell to automate
common tasks saves time and reduces errors in the deployment of Single Copy Clusters.

 Verify the ‘ A ’ record was created by using nslookup , as shown in Figure 13 - 5 .

c13.indd 368c13.indd 368 12/17/07 3:58:01 PM12/17/07 3:58:01 PM

Chapter 13: Single Copy Clusters

369

Figure 13-4

Figure 13-5

c13.indd 369c13.indd 369 12/17/07 3:58:02 PM12/17/07 3:58:02 PM

Part III: Working with PowerShell in a Production Environment

370

 The next step is to configure the network interfaces on both servers. By default the first network
connection on any server is always named “ Local Area Connection ” . Each additional network connection
appends a numeral to the connection name. Though simplistic in its nature, this naming convention of
network interfaces is not very intuitive. A better way to name the NICs is to differentiate between the
production interface and the private interface. Figure 13 - 6 shows the standard NIC configuration.

Figure 13-6

 As shown here, using netsh from within PowerShell allows for variables to be used within the
command:

$Interface1=”Local Area Connection”
$Interface1_New=”Public”
$Interface2=”Local Area Connection 2”
$Interface2_New=”Private”
$IP=”10.10.10.1”
$Subnet=”255.255.255.0”

c13.indd 370c13.indd 370 12/17/07 3:58:02 PM12/17/07 3:58:02 PM

Chapter 13: Single Copy Clusters

371

netsh interface set interface name = “$Interface1” newname = “$Interface1_New”
netsh interface set interface name = “$Interface2” newname = “$Interface2_New”
netsh interface ip set address name=”$Interface2_New” source=static “$IP” “$Subnet”
netsh interface ip set dns name=”$Interface2_New” static none none
netsh interface set interface “$Interface2_New” enable

 This script configures the first interface ’ s name ($Interface1) and renames the interface
 ($Interface1_New) . The second interface is the heartbeat connection between both servers. Typically
this connection would not be actively used in a regular server and would be disabled. The script takes
the old interface name ($Interface2) and renames it ($Interface2_New) . From there the NIC
receives an IP address ($IP) and subnet mask ($Subnet) . The next step sets the DNS server to null,
and removes the checkbox to automatically register this connection in DNS. Once all of the configuration
parameters are set, the last line of the script enables the new interface. (See Figure 13 - 7 .)

Figure 13-7

c13.indd 371c13.indd 371 12/17/07 3:58:03 PM12/17/07 3:58:03 PM

Part III: Working with PowerShell in a Production Environment

372

 Preparing the Shared Disk
 Before any disk can be presented to the OS, a partition must be created, followed by a disk letter, file
system type, and a volume name. Mount points can be used in place of disk letters. For more
information on how to configure mount points in a Microsoft Cluster, see Microsoft kb article 280297.
The following snippet shows how you can use PowerShell to create variables to automate the work of
creating and formatting disks:

$Disk=”C:\disk.txt”
$Disk1=”1”
$Disk1_Letter=”Q”
$Disk2=”2”
$Disk2_Letter=”S”
$Disk3=”3”
$Disk3_Letter=”T”
Set-Content -path $Disk -encoding ascii -value “select disk $Disk1 `r
create partition primary align=32 `r
select partition 1 `r
assign letter=$Disk1_Letter `r
select disk $Disk2 `r
create partition primary align=32 `r
select partition 1 `r
assign letter=$Disk2_Letter `r
select disk $Disk3 `r
create partition primary align=32 `r
select partition 1 `r
assign letter=$Disk3_Letter”

 This script contains variables for each disk in the array and uses the set-content cmdlet to create the
text file. The path parameter is required because Set-Content needs to know the location and the name
of the file to create. Using the encoding Ascii parameter allows for the formatting of the data. This
particular configuration has three disks with three variables for each disk. The disk number ($Disk#)
can be attained through diskpart or through diskmgmt.msc . The second value is the drive letter
 ($Disk#_Letter) and is used to assign the drive letter to the newly created logical drive. When each
partition is created, the partition is automatically sector aligned to the disk, via align=32 .

 When DISKPART.EXE is run programmatically, the /s switch is required as well as the location of
the file. In the following example, diskpart uses all of the commands that were placed into the disk.txt
file, via the Set-Content cmdlet, and executes them using the disk variable listed previously:

Diskpart.exe /s $Disk
del $Disk

 Once the disk creation is complete, the diskpart.txt file is deleted. Successful completion of the task
can be verified through disk manager (diskmgmt.msc). See Figure 13 - 8 .

c13.indd 372c13.indd 372 12/17/07 3:58:03 PM12/17/07 3:58:03 PM

Chapter 13: Single Copy Clusters

373

 The next component is to format the newly created disks. When you assign drive letters to the
($Disk#_Letter) variables, those variables are then appended with a colon (:) and formatted using
the portion of the following script. The last two commands set variables that are used in the cluster
management section.

$Disk1_Volume=”Quorum”
$Disk2_Volume=”Data”
$Disk3_Volume=”Logs”
format $Disk1_Letter.Insert(1,”:”) /FS:NTFS /V:$Disk1_Volume /y
format $Disk2_Letter.Insert(1,”:”) /FS:NTFS /V:$Disk2_Volume /y
format $Disk3_Letter.Insert(1,”:”) /FS:NTFS /V:$Disk3_Volume /y

$Disk2_Drive=$Disk2_Letter.Insert(1,”:”)
$Disk3_Drive=$Disk3_Letter.Insert(1,”:”)

Figure 13-8

c13.indd 373c13.indd 373 12/17/07 3:58:03 PM12/17/07 3:58:03 PM

Part III: Working with PowerShell in a Production Environment

374

 Figure 13 - 9 shows the script formatting each of the disk drives that were created in Figure 13 - 8 .

Figure 13-9

 Once again, verify the formatting using disk manager, as shown in Figure 13 - 10 .

 By using PowerShell to interact with common command - line executables, you have configured the
service account user and OU for the cluster, configured the network settings on both servers, and
prepared the shared disks for the cluster installation.

c13.indd 374c13.indd 374 12/17/07 3:58:04 PM12/17/07 3:58:04 PM

Chapter 13: Single Copy Clusters

375

Figure 13-10

 Cluster Installation
 Thus far all of the preparatory work in this chapter has been to properly deploy a two - node cluster using
PowerShell. The cluster install continues to build off of the previous work and uses cluster.exe , the
cluster utility command - line tool, to install and configure the cluster. (See Figure 13 - 11 .)

 To use cluster.exe to create a new cluster the following parameters are required:

 Cluster name

 Cluster IP address

 User account that will run the cluster service

 Password for the cluster service user account

 Hostname of the node that the cluster will be installed on

❑

❑

❑

❑

❑

c13.indd 375c13.indd 375 12/17/07 3:58:04 PM12/17/07 3:58:04 PM

Part III: Working with PowerShell in a Production Environment

376

 Instead of statically defining all of the required parameters, you can use PowerShell as shown here to set
all of the parameters as variables, and then run the cluster install script:

$Cluster_Name=”MB002MSCS”
$Cluster_IP=”2.4.191.91”
$User (reused from user configuration)
$Password (reused from user configuration)
$Node1_Hostname=”MB002A”
$Logfile=”c:\mscs_install.txt”
cluster /cluster:$Cluster_Name /create /IPAddr:$Cluster_IP,$Cluster_Subnet
/USER:$User /pass:$Password
 /node:$Node1_Hostname /verbose > $Logfile

 Performing scripted installs like this guarantees that any cluster deployed in this manner produces a
repeatable, consistent set of results. This type of deployment is particularly advantageous for hosted

Figure 13-11

c13.indd 376c13.indd 376 12/17/07 3:58:05 PM12/17/07 3:58:05 PM

Chapter 13: Single Copy Clusters

377

Exchange providers or large Exchange organizations. The preceding script performs a verbose logging of
the cluster install, which can be reviewed to assist in troubleshooting a failed cluster install or to provide
a summary of a successful install. Once the install is complete, the second node can be added by using
the following script:

$Cluster_Name (reused from the initial configuration above)
$Node2_Hostname=”MB002B”
$Password (reused from user configuration)
cluster /cluster:$Cluster_Name /add:$Node2_Hostname /password:$Password /verbose

 When complete, the cluster will look like the one shown in Figure 13 - 12 .

Figure 13-12

c13.indd 377c13.indd 377 12/17/07 3:58:05 PM12/17/07 3:58:05 PM

Part III: Working with PowerShell in a Production Environment

378

 And via the command line, it looks like Figure 13 - 13 .

Figure 13-13

 There are two final post - installation tasks. One is required for correct performance, and the other is for
ease of management once Exchange is installed. The required configuration change is to set the Private
interface ’ s communication mode. Because this interface is either directly connected to the other node by
a cross - over cable or is connected to a non - routable VLAN on a switch, it cannot take public traffic and
needs to be configured for internal cluster communications only (private network). The following single
cluster command fixes this:

$Interface2_New (reused from the network configuration section)
cluster network $Interface2_New /prop Role=1

c13.indd 378c13.indd 378 12/17/07 3:58:05 PM12/17/07 3:58:05 PM

Chapter 13: Single Copy Clusters

379

 The next two commands consolidate the non quorum disks into a single group and delete the
empty group:

$Disk3_Drive (reused from the disk format section)
$Cluster_Name (reused from the MSCS install section)
cluster resource “Disk $Disk3_Drive” /move: “Group 0”
cluster /cluster:$Cluster_Name group “group 1” /delete

 Figure 13 - 14 shows verification of the cluster configuration through cluadmin .

Figure 13-14

c13.indd 379c13.indd 379 12/17/07 3:58:06 PM12/17/07 3:58:06 PM

Part III: Working with PowerShell in a Production Environment

380

 And through the command line as shown in Figure 13 - 15 .

Figure 13-15

 The MSCS cluster has been installed and configured and is ready for the Exchange install.

 Installing Exchange on an SCC Cluster
 When installing Exchange on the SCC cluster, the installation must be performed once on the active node
and once on the standby node. The configuration on the first node will set up the new CMS name, CMS
IP address, and the CMS data path. By providing these details, the installer will deploy the Mailbox role,
as well as the clustered mailbox role. All of the install parameters that were discussed in Chapter 3
pertain to an SCC cluster install.

 In the most basic deployment, SCC cluster installation via PowerShell requires a CMS name
(which also becomes the group name in Cluster Administrator), an IP address for the CMS name,

c13.indd 380c13.indd 380 12/17/07 3:58:06 PM12/17/07 3:58:06 PM

Chapter 13: Single Copy Clusters

381

and the CMS data path. Using variables for each of these parameters results in the basic installation
script listed here:

$Install_Directory=”S:\Bits”
$Cluster_MBX_Name=”MB002”
$Cluster_MBX_IP=”2.4.191.91”
$Cluster_MBX_Path=”S:\MDB”
Cd $Install_Directory
Mkdir $Cluster_MBX_Path
./Setup.com /role:m /NewCMS /CMSName:$Cluster_MBX_Name
 /CmsIpAddress:$Cluster_MBX_IP /CmsSharedStorage /CMSDataPath:$Cluster_MBX_Path

 This script installs Exchange on the first node of the cluster as a Clustered Mailbox Server. The mailbox
server name is defined by ($Cluster_MBX_Name) , the IP address is set by the ($Cluster_MBX_IP)
variable, and the ($Cluster_MBX_Path) tells the installer where to put the database and log files. If the
folder is not created on the drive where the database and logs are going, the installer will error out.

 Once the installation is complete, open the Exchange Management Shell and use
Get-ClusteredMailboxServerStatus to show the newly created cluster. Notice there is only one
node present. To install the clustered mailbox onto the passive node, the setup command does not need
to specify any of the CMS install information, and the resources can stay on the first node. All that is
required for installation in the passive node is the role switch with the mailbox parameter. If any other
parameters such as the install directory or the ADAM port were defined, they also need to be used here.
For more information about install switches, please see Chapter 3 .

$Install_Directory=”C:\EX2007”
Cd $install_Directory
./Setup.com /role:m

 The installer checks for cluster membership. If the server is the member of a cluster that contains the
clustered mailbox role, the installer will automatically add the passive node into the cluster. When
complete the cluster will look like Figure 13 - 16 .

Figure 13-16

c13.indd 381c13.indd 381 12/17/07 3:58:06 PM12/17/07 3:58:06 PM

Part III: Working with PowerShell in a Production Environment

382

 SCC cluster resources have undergone resource model dependency changes that require a manual
dependency be created and assigned. The physical disk resources are now dependencies of the mailbox
database. These dependencies are not automatically created when the mailbox cluster is installed.
Within our current configuration, it would be best practice to move the physical disk resources out of
Group 0, place them into MB002, and then delete Group 0. This can be accomplished with the
following script:

$Cluster_MBX_Name (reused from Exchange install)
cluster resource “Disk S:” /move:$Cluster_MBX_Name
cluster resource “Disk T:” /move:$Cluster_MBX_Name
cluster group “Group 0” /delete

 Once the physical disk resources are in the same group as the Exchange resources, the dependency can
be created. Note: having the physical disk resource in the same resource group is not required, but is a
best practice for managing Exchange cluster resources. The mailbox database needs to be offline for the
next step. Creating the dependencies can be done by using PowerShell to set the Microsoft Exchange
Database Instance dependent upon the disks like this:

$Cluster_MBX_Name (reused from Exchange install)
cluster resource “First Storage Group/Mailbox Database ($Cluster_MBX_Name)”
/offline
cluster resource “First Storage Group/Mailbox Database ($Cluster_MBX_Name)”
/adddep: “Disk $Disk2_Drive” /adddep: “Disk $Disk3_Drive”
cluster resource “First Storage Group/Mailbox Database ($Cluster_MBX_Name)” /online

 In this example the $Cluster_MBX_Name is reused from the install steps, and $Disk2_Drive and
 $Disk3_Drive are variables that are created during the drive formatting steps. This script should be run
for every physical disk resource that Exchange is using. For more information about resource
dependencies for Exchange Server 2007, please see the Microsoft 2007 help file (.chm).

 One last component needs to be configured for this cluster. You may have noticed that the data and logs
reside on the same logical drive. The Move-StorageGroupPath from within the Exchange Management
Shell can correct this. By specifying the -LogFolderPath as the T:\logs path, the EMS will check the
path, create the folder if it does not exist, and prompt you to verify the movement of the log files. This
action will take the database offline, and will have to be brought online manually. Hence another cmdlet
to move the log files to the correct location. This script adds in an additional feature; it requires the use of
the Exchange Management Shell. It is perfectly acceptable to run this from within the EMS, however if
you want to try this script with all of the previous scripts to create a deployment script, you must add in
the Exchange Management PowerShell.

$Disk3_Drive (reused from disk section)
Add-PSSnapin Microsoft.Exchange.Management.PowerShell.Admin
Move-StorageGroupPath “First Storage Group” -LogFolderPath
$Disk3_Drive.Insert($Disk3_Drive.Length,”\Logs”

c13.indd 382c13.indd 382 12/17/07 3:58:07 PM12/17/07 3:58:07 PM

Chapter 13: Single Copy Clusters

383

 This script may seem a little excessive at first, but it takes PowerShell, calls the Exchange snap - in for
PowerShell, calls an Exchange cmdlet, and then uses part of the native .NET functionality to manipulate
the variable into something useful!

 Thus far this chapter has shown how to use PowerShell to create, format, and present disks to the
servers and to create the necessary connections. From there an automated installation and configuration
of the MSCS cluster was performed, which then allowed for a scripted install of the Mailbox role in a
clustered mailbox configuration. After the Mailbox role was installed, further PowerShelling provided
the rest of the Exchange resource configuration. A manual deployment of a two - node cluster can take
several hours and is prone to error if the administrator is not diligent in making sure that both systems
are configured properly. However, by using PowerShell the deployment time is cut considerably, system
configuration is reduced in complexity, and the scripts can be reused for future deployments or for
disaster testing.

 Resource Management
 Exchange Server 2007 allows Exchange administrators the ability to control cluster resources, natively,
from PowerShell. The cluster cmdlets perform the same essential functions as the cluster.exe
command, but are simpler to use, have a streamlined appearance, and have documented help on
how to perform Exchange - specific tasks. The following cmdlets are discussed:

 Get-ClusteredMailboxServerStatus

 Stop-ClusteredMailboxServer

 Start-ClusteredMailboxServer

 Move-ClusteredMailboxServer

 This section discusses how to move clustered resources between nodes, how to stop and start
the cluster, and how to check the cluster ’ s health. Open the Exchange Management Shell using the
Get-ClusteredMailboxServerStatus . The output of this shows the Clustered Mailbox Server
name, the operational state, the nodes present in the cluster, and a list of any failed resources.
From there, you can take the clustered mailbox offline to perform maintenance by using
Stop-ClusteredMailboxServer . The cmdlet only requires two parameters: the name of the
clustered mailbox (Identity) and the reason that it is being taken offline (StopReason) .
To take your scc2mbx cluster offline you would issue the following:

Stop-ClusteredMailboxServer -Identity MB002 -StopReason “Firmware patching on SAN”

❑

❑

❑

❑

c13.indd 383c13.indd 383 12/17/07 3:58:07 PM12/17/07 3:58:07 PM

Part III: Working with PowerShell in a Production Environment

384

 Figure 13 - 17 shows stopping the clustered resource for maintenance on the SAN.

Figure 13-17

 This cmdlet takes all of the resources in the MB002 resource group offline. When the Clustered
Mailbox Server is ready to come online, Start-ClusteredMailboxServer would be issued, as shown
in Figure 13 - 18 .

Figure 13-18

c13.indd 384c13.indd 384 12/17/07 3:58:07 PM12/17/07 3:58:07 PM

Chapter 13: Single Copy Clusters

385

 If a manual failover of resources needs to occur, this too can be accomplished through the Exchange
Management Shell by using the Move-ClusteredMailboxServer cmdlet. This cmdlet has three
necessary parameters: the name of the Clustered Mailbox Server (Identity) , the node that will receive
the Exchange resources (TargetMachine) , and the reason for the resource movement
(MoveComment) . The command to move the MB002 mailbox resources from MB002A to MB002B
for server maintenance would look like this:

Move-ClusteredMailboxServer MB002 -TargetMachine MB002A -MoveComment “Moving
resource to perform maintenance on MB002B.”

 The Get-ClusteredMailboxServerStatus cmdlet verifies that the resource move was correctly
processed. Additional verification can be performed using the cluster administrator. The CMS can only
be moved to a node that does not have another CMS already running on it, must be a member of the
same MSCS cluster, and will maintain the operational state (online or offline) on the new node it had on
the old node. Figure 13 - 19 shows the cluster status.

Figure 13-19

 Putting It All Together
 Throughout the chapter, individual components of an SCC install have been presented to show that
there are numerous tasks that are required to make the cluster functional. By using PowerShell, these
individual components have scripted to allow for reusable variables, faster deployment, and a
documented repeatable process. The methodology of showing each individual script and how it
automates a subcomponent was designed to lead the Exchange administrator to the point of putting all
of the scripts together to have a fully automated deployment of SCC. The following script does that. It is
a collective install and will take a base system that has all of the required hardware installed, and move it

c13.indd 385c13.indd 385 12/17/07 3:58:07 PM12/17/07 3:58:07 PM

Part III: Working with PowerShell in a Production Environment

386

through network configuration, disk configuration, MSCS install, the Exchange installer, and ultimately
to configuring the resources to pass an ExBPA audit.

NodeA
$DC1=”exchangeexchange”
$DC2=”local”
$DC3=$DC1+”.”+$DC2+”:389”
$Service_Account_OU=”SVC_Accounts”
$User=”svc-mb002”
$Password=”P@55w0rd”
$DNS_Server=”exchangeexchange.local”
$DNS_Zone=”exchangeexchange.local”
$Interface1=”Local Area Connection”
$Interface1_New=”Public”
$Interface2=”Local Area Connection 2”
$Interface2_New=”Private”
$IP=”10.10.10.1”
$Subnet=”255.255.255.0”
$Disk =”C:\disk.txt”
$Disk1=”1”
$Disk1_Letter=”Q”
$Disk2=”2”
$Disk2_Letter=”S”
$Disk3=”3”
$Disk3_Letter=”T”
$Disk1_Volume=”Quorum”
$Disk2_Volume=”Data”
$Disk3_Volume=”Logs”
$Cluster_Name=”MB002MSCS”
$Cluster_IP=”2.4.191.90”
$Node1_Hostname=”MB002A”
$Logfile=”c:\mscs_install.txt”
$Node2_Hostname=”MB002B”
$Cluster_MBX_Name=”MB002”
$Cluster_MBX_IP=”2.4.191.91”
$Cluster_MBX_Path=”S:\MDB”
$Install_Directory=”S:\Bits”

$objDomain = [ADSI]”LDAP://$DC3/dc=$DC1,dc=$DC2”
$objOU = $objDomain.Create(“organizationalUnit”, “ou=$Service_Account_OU”)
$objOU.SetInfo()
$objOU = [ADSI]”LDAP://$DC3/ou=$Service_Account_OU,dc=$DC1,dc=$DC2”
$objUser = $objOU.Create(“user”, “cn=$User”)
$objUser.Put(“sAMAccountName”, “$User”)
$objUser.SetInfo()
$objUser.SetPassword(“$Password”)
$objUser.SetInfo()
$objUser.Put(“UserAccountControl”, “66048”)
$objUser.SetInfo()

dnscmd $DNS_Server /recordadd $DNS_Zone $Cluster_Name a $Cluster_IP
netsh interface set interface name = “$Interface1” newname = “$Interface1_New”
netsh interface set interface name = “$Interface2” newname = “$Interface2_New”

c13.indd 386c13.indd 386 12/17/07 3:58:08 PM12/17/07 3:58:08 PM

Chapter 13: Single Copy Clusters

387

netsh interface ip set address name=”$Interface2_New” source=static “$IP” “$Subnet”
netsh interface ip set dns name=”$Interface2_New” static none none
netsh interface set interface “$Interface2_New” enable
Set-Content -path $Disk -encoding ascii -value “select disk $Disk1 `r
create partition primary align=32 `r
select partition 1 `r
assign letter=$Disk1_Letter `r
select disk $Disk2 `r
create partition primary align=32 `r
select partition 1 `r
assign letter=$Disk2_Letter `r
select disk $Disk3 `r
create partition primary align=32 `r
select partition 1 `r
assign letter=$Disk3_Letter”
diskpart /s $Disk
del $Diskformat $Disk1_Letter.Insert(1,”:”) /FS:NTFS /V:$Disk1_Volume /y
format $Disk2_Letter.Insert(1,”:”) /FS:NTFS /V:$Disk2_Volume /y
format $Disk3_Letter.Insert(1,”:”) /FS:NTFS /V:$Disk3_Volume /y
$Disk2_Drive=$Disk2_Letter.Insert(1,”:”)
$Disk3_Drive=$Disk3_Letter.Insert(1,”:”)
cluster /cluster:$Cluster_Name /create /IPAddr:$Cluster_IP /USER:$User
/pass:$Password /node:$Node1_Hostname /verbose > $Logfile
cluster /cluster:$Cluster_Name /add:$Node2_Hostname /password:$Password /verbose
cluster network $Interface2_New /prop Role=1
cluster resource “Disk $Disk2_Drive” /move:”Group 0”
cluster /cluster:$Cluster_Name group “group 1” /delete
cd $Install_Directory
./Setup.com /role:m /NewCMS /CMSName:$Cluster_MBX_Name
/CmsIpAddress:$Cluster_MBX_IP /CmsSharedStorage /CMSDataPath:$Cluster_MBX_Path
cluster resource “$Disk2_Drive” /move:$Cluster_MBX_Name
cluster resource “$Disk3_Drive” /move:$Cluster_MBX_Name
cluster group “Group 0” /delete
cluster resource “First Storage Group/Mailbox Database ($Cluster_MBX_Name)”
/offline
cluster resource “First Storage Group/Mailbox Database ($Cluster_MBX_Name)”
/adddep: “Disk $Disk2_Drive” /adddep: “Disk $Disk3_Drive”
cluster resource “First Storage Group/Mailbox Database ($Cluster_MBX_Name)” /online
Add-PSSnapin Microsoft.Exchange.Management.PowerShell.Admin
Move-StorageGroupPath “First Storage Group” -LogFolderPath
$Disk3_Drive.Insert($Disk3_Drive.Length,”\Logs”
cluster resource “First Storage Group/Mailbox Database ($Cluster_MBX_Name)” /online

NodeB
(The network interfaces should be configured before MSCS is installed on the first
node).
$Interface1=”Local Area Connection”
$Interface1_New=”Public”
$Interface2=”Local Area Connection 2”
$Interface2_New=”Private”
$IP=”10.10.10.2”
$Subnet=”255.255.255.0”

(continued)

c13.indd 387c13.indd 387 12/17/07 3:58:08 PM12/17/07 3:58:08 PM

Part III: Working with PowerShell in a Production Environment

388

netsh interface set interface name = “$Interface1” newname = “$Interface1_New”
netsh interface set interface name = “$Interface2” newname = “$Interface2_New”
netsh interface ip set address name=”$Interface2_New” source=static “$IP” “$Subnet”
netsh interface ip set dns name=”$Interface2_New” static none none
netsh interface set interface “$Interface2_New” enable

$Install_Directory=”C:\EX2007”
Cd $Install_Directory
./Setup.com /role:m

 Summary
 This chapter described the implementation and management of a two - node SCC cluster. The first half of
the chapter described the individual components and how through PowerShell these install steps are
automated. Before PowerShell, performing an automated install would have required knowledge of
batch scripts, Visual Basic, and a hodgepodge of unattended files and still would not have provided the
same result as using PowerShell. Using PowerShell in conjunction with system and application
commands provides for an easier, more efficient use of scripts to perform common administrative tasks.
The power of having .NET functionality built in allows for manipulation of variables, objects, and data
that is more robust and has a better framework.

(continued)

c13.indd 388c13.indd 388 12/17/07 3:58:09 PM12/17/07 3:58:09 PM

 Troubleshooting
Exchange Issues

 This chapter deals with troubleshooting Microsoft Exchange Server 2007 through the use of
 cmdlets. Microsoft has created several test cmdlets that allow the system administrator to
 programmatically test various Exchange roles and services. These cmdlets are built into Exchange.
No longer do you need to write cumbersome multilanguage test scripts! This chapter covers
the following:

 Determining server health

 Determining Exchange system health

 Testing anti - spam functions

 Troubleshooting Client Access Server Role functions

 Testing Web Services

 Troubleshooting MAPI connectivity

 Testing Mailflow

 Testing the Exchange Search service

 Troubleshooting edge synchronization

 Troubleshooting Unified Messaging connectivity

 Using Get-EventLog

 Using Get-Message

 Tracking messages

 Working with event log levels

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

c14.indd 389c14.indd 389 12/17/07 4:04:12 PM12/17/07 4:04:12 PM

Part III: Working with PowerShell in a Production Environment

390

 To receive the greatest benefit from these cmdlets, a fully configured Exchange environment is required.
CAS, Hub, and Mailbox roles are required for tests in this chapter. Also, Internet connectivity is
 recommended so the test cmdlets can retrieve updates from Microsoft.

 Determining Server Health
 This section covers the following cmdlets:

 Test-ServiceHealth

 Get-ExchangeServer

 The Test-ServiceHealth cmdlet queries the targeted Exchange server ’ s roles and then checks to make
sure that the required services are running. The account that runs this cmdlet must be a member of the
Exchange Server Administrators Group as well as a local administrator on that computer. By using
the Server parameter, a remote server can be queried. If the Server parameter is not used, the cmdlet
runs the health check locally. The domain controller to query can be set via the DomainController
 parameter, as well as the AD timeout value ActiveDirectoryTimeout , 15 seconds by default. This
cmdlet can be run in a monitoring mode by setting the MonitoringContext to $true . This allows the
cmdlet to pull events and performance counters. When Test-ServiceHealth is run against the local
machine, the output by default will look like Figure 14 - 1 .

❑

❑

Figure 14-1

c14.indd 390c14.indd 390 12/17/07 4:04:13 PM12/17/07 4:04:13 PM

Chapter 14: Troubleshooting Exchange Issues

391

 W3Svc is stopped. This is particularly bad for a server with the CAS role installed. Start - Service w3svc
fixes this problem. To check on an individual service, issue Get-Service service name .

 This cmdlet can have its usefulness expanded by using it in a pipeline with other cmdlets. Thus far it has
been used only on a single server. If you wanted to check the health of all of your Exchange servers
within your organization, you could issue Get-ExchangeServer | Test-ServiceHealth . The output
is displayed in Figure 14 - 2 .

Figure 14-2

 Though this is informative, in its current state it is not very useful. All the services for each server are
listed, but none of the server names are present. When troubleshooting this can be frustrating, and needs
a little more PowerShell to be functional:

$a=Get-ExchangeServer
foreach ($z in $a) {echo $z.name (Test-ServiceHealth $z)}

 The variable $a contains the value of the output of Get-ExchangeServer . Next a foreach loop is
 constructed to test each value in the array. Once the foreach loops has its value it needs to execute the
parameters that are contained within the {} . This script echoes the name of the server ($z.name) and
then runs through Test-ServiceHealth using $z as the server name. The output in Figure 14 - 3 shows
the server name associated with each set of service health checks.

c14.indd 391c14.indd 391 12/17/07 4:04:13 PM12/17/07 4:04:13 PM

Part III: Working with PowerShell in a Production Environment

392

 To perform a health check on servers that contain a particular role, modify the Get-ExchangeServer to
include the role that you will query. Get-ExchangeServer | where {$_.IsMemberOfCluster -
eq”Yes”} or Get-ExchangeServer | where {$_.IsMailboxServer -eq”True”} . This performs
the health check only on clusters within the organization. If you wanted to check on a specific site, after,
say, a power outage, you could change the scope to include the site with the Get-ExchangeServer . In
Exchange 2007 sites are now defined by the AD site boundary. Therefore all site names come from the
AD sites and Services naming. To check on all Exchange servers in New York, with a site name of NY , the
 Get-ExchangeServer portion would be changed to Get-ExchangeServer | where {$_.Site -eq
“exchangeexchange.local/Configuration/Sites/NY”} . The flexibility of Test-ServiceHealth is
not in the cmdlet itself, but in the pipelined input passed to it.

Figure 14-3

c14.indd 392c14.indd 392 12/17/07 4:04:14 PM12/17/07 4:04:14 PM

Chapter 14: Troubleshooting Exchange Issues

393

 Determining Exchange System Health
 This section covers the following cmdlet:

 Test-SystemHealth

 This PowerShell version of ExBPA is possibly one of the coolest cmdlets Microsoft has created. The
 Test-SystemHealth cmdlet runs against the local server unless you specify the ServerList
 parameter. When this cmdlet is initiated, it attempts to run an Internet update to retrieve the latest BPA,
and then performs the BPA test. Errors and critical warnings appear on the screen in red; warnings
appear in yellow.

 This cmdlet has several parameters, which are described in the following list:

 ADCredentials : This parameter is used if alternative credentials are used to query AD.
By default the current user is used.

 Analyze : Used to perform the analysis on gathered data. This is enabled by default. The values
for this parameter are $true or $false .

 Collect : Enabled by default, this parameter enables the data collector.

 ConfigurationFileLocation : If the BPA files are located in a directory other than %path%\
Microsoft\Exchange Server\Bin\%language% , use this parameter to specify the location of
the BPA files. If the Exchange server that the cmdlet is being run from does not have web access,
and your desktop or another device has the ExBPA files, ConfigurationFileLocation can
also use an SMB connection and read the XML files from the remote device.

 Description : This parameter designates a friendly name for the scan being performed.

 DomainController : Specifies the domain controller to use to query AD. If this parameter is
used, use the FQDN for the domain controller.

 DownloadConfigurationUpdates : By default this parameter is set to true , and is responsible
for downloading the latest version of the BPA conf files. If the server that is running the
Test-SystemHealth does not have web access, set this to false .

 ExchangeCredentials : If the user running this cmdlet does not have the necessary
 permissions, this parameter can be used to specify an alternate user ’ s credentials.

 Export : By default this is set to false . This parameter is used in conjunction with
 OutFileLocation and removes “ sensitive ” data — any data that the Exchange administrator
would need in order to use the BPA report — from the report.

 GenerateEvents : This parameter, which is reserved for internal use, lists events after the test is
complete. It displays errors, warnings, and informational alerts if it is set to true . If you use this
parameter in an interactive session, use an output modifier such as a format list.

 GenerateSQMData : This parameter is reserved for internal use. Use it to create Service Quality
Monitoring files to upload to Microsoft. By default this is set to true .

 MaxThreads : This parameter is reserved for internal use. Setting this parameter tells the cmdlet
the number of threads available for execution of this task. By default this is set to 25 threads.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

c14.indd 393c14.indd 393 12/17/07 4:04:14 PM12/17/07 4:04:14 PM

Part III: Working with PowerShell in a Production Environment

394

 OutFileLocation : Setting this parameter tells the cmdlet to output to details of the test
to the given location. This parameter requires the full path in the output. For example,
OutFileLocation server1 will fail. -OutFileLocation.\server1 will also fail. The only
output destinations that work are a full path, D:\logs\server1 or \\servername\share\
server1 . If you save the files as XML, you can further manipulate them and make inserting
them into a configuration database easier.

 Roles : This parameter is reserved for internal use. It specifies the role to check, however passing
any acceptable parameter to it will cause the test to run. So if you have a Mailbox server and
specify the UnifiedMessaging option, it still runs and returns any discrepancies found.

 ScanType : This parameter is reserved for internal use; it specifies the type of test to run.
The following scan types are valid:

❑ Health : Checks for misconfigurations, problems, outdated drivers, missing patches, the
last time db backups were performed, message size settings, cluster configurations, and so
on. This is the catch - all task and will find most of the problems in the environment.

❑ Perf : Runs for two hours and looks for performance problems.

❑ Permissions : Checks for missing or misconfigured permissions within AD sites, AD
 domains, the Exchange configuration, and checks the permission structure.

❑ ConnectivityTask : Checks for basic network connectivity problems, queries AD for site
 membership and for Exchange group membership.

❑ BaselineTask : Used to compare configurations and allows for file version checking.

❑ Ex2007Readiness : Performs a basic check against the server and the domain for
 feasibility of installing Exchange 2007 in the forest.

❑ PrecheckInstall : This is the pre - deployment check. If this is run against a server that
 already has Exchange 2007 installed, it will error out.

❑ PrecheckUninstall : Similar to the install, but checks all the requirements before the
uninstall.

❑ PrecheckUpgrade : Requirement check before upgrading from a prior version.

❑ PrecheckDR : Checks requirements before recovering the server.

❑ Postcheck : Checks deployment after installation.

 ServerList : Specifies the server to run the test against. This parameter can be a single server,
or a list of servers. If this parameter is not specified, the test will run against the local machine.

 Timeout : Period of time before the cmdlet will error out. By default it is set to 300 seconds, but
can go up to 9,999,999.

 Figure 14 - 4 shows the output of the Test-SystemHealth cmdlet. As you can see, this cmdlet can be
quite informational. This particular figure shows that the network drivers may need to be updated as
well as an immediate need to conduct a backup of the Exchange databases!

 When the Test-SystemHealth cmdlet completes, any information that it finds will be displayed on the
console. If OutFileLocation is used, you can take the file, rename the extension as .xml if you did not
save it as such, and use ExBPA to read it. By using ExBPA it will perform all of the formatting and give
the results a more graphically appealing look.

❑

❑

❑

❑

❑

c14.indd 394c14.indd 394 12/17/07 4:04:15 PM12/17/07 4:04:15 PM

Chapter 14: Troubleshooting Exchange Issues

395

 Testing the Anti - Spam Functions
 We are now going to review the following cmdlets that will assist in troubleshooting issues with the
anti - spam features of Exchange Server 2007. The following cmdlets are covered in this section:

 Test-IPAllowListProvider

 Test-IPBlockListProvider

 Test-SenderId

 Test - IPA llowListProvider
 The first cmdlet is Test-IPAllowListProvider and is used to test an IP address to determine if it is
listed on a configured service provider that performs email safe lists.

 The following parameters are available for this cmdlet:

 Identity : This is the IPAllowListProviderId name that was specified when the
 IPAllowListProvider was created.

 IPAddress : The IP address of the remote device you want the safe list server to check.

 DomainController : Sets the DC to query.

 Server : Specifies what server to run the test on.

❑

❑

❑

❑

❑

❑

❑

Figure 14-4

c14.indd 395c14.indd 395 12/17/07 4:04:15 PM12/17/07 4:04:15 PM

Part III: Working with PowerShell in a Production Environment

396

 The cmdlet may seem a little confusing at first; however after a couple of IP address lookups it will seem
more intuitive. Basically the cmdlet tests the validity of the remote IP address as a possible source of
unsavory email. The allow list provider either confirms or denies that they are a reputable source from
the provider ’ s aggregation of spam and junk emails. If the IP address is deemed good, it will return a
value of true on the cmdlet.

 Figure 14 - 5 shows using Get-IPAllowListProvider and using the value returned as pipelined input
for the Test-IPAllowListProvider .

Figure 14-5

 Test - IPB lockListProvider
 The next cmdlet is the Test-IPBlockListProvider , which provides lookup for real - time block lists.
This test cmdlet is very similar to Test-IPAllowListProvider , except it performs lookups for IP
addresses that are on a block list and are considered spammers ’ IP addresses.

 The following parameters are available for this cmdlet:

 Identity : This is the IPAllowListProviderId name that was specified when the
 IPBlockListProvider was created.

 IPAddress : The IP address of the remote device you want the safe list server to check.

 DomainController : Sets the DC to query.

 Server : Specifies what server to run the test on.

❑

❑

❑

❑

c14.indd 396c14.indd 396 12/17/07 4:04:16 PM12/17/07 4:04:16 PM

Chapter 14: Troubleshooting Exchange Issues

397

 Figure 14 - 6 shows using two RBL providers to check the validity of an IP address.

Figure 14-6

 Test - SenderID
 Using the Test-SenderId cmdlet tests the Sender ID functionality of a target domain ’ s address or your
own. For information about what Sender ID is, consult the Exchange help file or www.microsoft.com/
mscorp/safety/technologies/senderid/default.mspx . This cmdlet must be run on a server that
has the Hub or Edge role installed. There are two required parameters for this cmdlet:

 IPAddress : The value for this parameter is the IP address of the server that you want to check
the credentials of. For example, if you wanted to check Microsoft ’ s SPF record to make sure its
Sender ID was up to par, you would use the IP address of Microsoft ’ s mail server. In this
instance one of them is 131.107.115.212.

 PurportedResponsibleDomain : This is the domain name of the remote domain you are
 querying. In our example this would be Microsoft.com . The cmdlet would look like this:
 Test-SenderId -Address 131.107.115.212 -PurportedResponsibleDomain
 Microsoft.com . As you can see in Figure 14 - 7 , the IP address and domain name for
Microsoft are configured correctly.

 The other parameters for this cmdlet are as follows:

 IPAddress : The IP address of the server you are querying.

 PurportedResponsibleDomain : Domain name that you are attempting to verify.

❑

❑

❑

❑

c14.indd 397c14.indd 397 12/17/07 4:04:16 PM12/17/07 4:04:16 PM

Part III: Working with PowerShell in a Production Environment

398

 DomainController : Sets the DC to query. For Hub servers this is the FQDN of the domain
 controller. In Edge installations this parameter refers to the local ADAM instance. This
 parameter is not required.

 HelloDomain : The HELO or EHLO SMTP commands that are issued from the sender.

 Server : The server name that the cmdlet will execute this script against. If the server name is
not provided, this cmdlet will run against the local machine.

Understanding Sender ID
 Sender ID was a joint development effort between Microsoft and other industry com-
panies in an effort to combat spam. It is a cost - free authentication solution that uses the
Sender Policy Framework (SPF). How this is accomplished is the administrator creates
an SPF record that contains the IP address of all external - facing email servers and the
MX record of your email server. How does this work?

 1. Email is sent to your domain.

 2. Your mail relay accepts the message and performs an SPF record lookup
in DNS.

 3. If the sending mail server ’ s name and IP address are correct it is sent on. If
they fail verification, this message may be deleted, blocked, or sent to the junk
folder. This works in part with the Anti - Spam stamping.

❑

❑

❑

Figure 14-7

c14.indd 398c14.indd 398 12/17/07 4:04:16 PM12/17/07 4:04:16 PM

Chapter 14: Troubleshooting Exchange Issues

399

 Troubleshooting the Client Access Server
Role Functions

 Now you are going to look at the following key cmdlets that can be used to troubleshoot the Client
Access Server (CAS) role.

 Test-OutlookWebServices

 Test-ActiveSyncConnectivity

 Test-OwaConnectivity

 Test-WebServicesConnectivity

 Test - OutlookWebServices
 The Test-OutlookWebServices cmdlet runs a series of tests against the Autodiscover service on a
server that has the Client Access Server role installed. The Autodiscover service is extremely important
to organizations; Autodiscover is responsible for the Availability server, Outlook Anywhere, Offline
Address Book publishing, free busy, and Unified Messaging retrieval. During initial deployments of
Exchange Server 2007, the Autodiscover service was one of the most widely misconfigured components
and it remains so to this day. The value this script provides is to allow the Exchange administrator to
have a proactive means of testing service availability of all the components with the Autodiscover
 service, and not rely on the end user as an accurate measure of usability.

 The following parameters listed for Test-OutlookWebServices are all optional. The cmdlet executes
without any command - line input.

 ClientAccessServer : Specifies the CAS server that the cmdlet will test against.

 Identity : This parameter can use any valid email address in the forest. Alternate input can
include domain\user name or the user ’ s GUID. The cmdlet will query AD and translate the
input into the user ’ s email address and then perform the test.

 MonitoringContext : This true/false value sets whether to include the monitoring events and
performance data. It also passes the data onto MOM if the MOM agent is installed.

 TargetAddress : Specifying this parameter will test that the recipient can retrieve the data that
the Test-OutlookWebServices is requesting. This would be a valid SMTP address in your
domain.

 Figure 14 - 8 shows the output of a test against the OutlookWebServices .

 The following are the steps that the Test-OutlookWebService s cmdlet uses:

 1. Tests Autodiscover with the email address specified in the Identity parameter or if none is
specified, uses the current user.

 2. Contacts the Autodiscover site http://mb002.exchangeexchange.local/Autodiscover/
Autodiscover.xml .

❑

❑

❑

❑

❑

❑

❑

❑

c14.indd 399c14.indd 399 12/17/07 4:04:17 PM12/17/07 4:04:17 PM

Part III: Working with PowerShell in a Production Environment

400

 3. Contacts the AS also known as the Availability Service (Free/Busy) http://mb002/
exchangeexchange.local/EWS.Exchange.asmx .

 4. Contacts the OAB (Offline Address Book) service http://mb002.exchangeexchange.local/
EWS/Exchange.asmx .

 5. Contacts the UM (Unified Messaging) service http://mb002.exchangeexchange.local/
UnifiedMessaging/Service.asmx .

 6. Tests any external URLs that have been set.

 7. If RPC/HTTP is used it attempts to contact the service http://exchangexchange.com/Rpc .
 Each of these steps will report results to the screen allowing the administrator to review and
react to any of the errors that are generated.

 Test - ActiveSyncConnectivity
 The Test-ActiveSyncConnectivity cmdlet tests a full synchronization of a mailbox using Microsoft
ActiveSync. Though ActiveSync configuration is not a complicated task, for some unknown reason it still
generates a lot of calls to help desks and Exchange administrators. Using this cmdlet, the Exchange
admin can test synchronization and configuration against any user. By default all users are ActiveSync
enabled. If no user is specified, the cmdlet uses the monitoring mailbox, which is the CAS user.

 The following parameters are available for this cmdlet:

 AllowUnsecureAccess : Necessary if you are not using SSL.

 ClientAccessServer : Specifies a particular CAS server to synchronize against.

❑

❑

Figure 14-8

c14.indd 400c14.indd 400 12/17/07 4:04:17 PM12/17/07 4:04:17 PM

Chapter 14: Troubleshooting Exchange Issues

401

 DomainController: Sets the DC to query.

 MailboxCredential : User that the cmdlet should attempt to synchronize against. If no user is
specified the CAS user is used. Using MailboxCredential:(Get-Credential test@
exchangeexchange.local) prompts for the password of the user ‘test’. Once the password
is entered, the test cmdlet runs.

 MailboxServer : Mailbox server that contains the mailbox to test. If no server is specified,
 connectivity to all mailbox servers will be tested.

 MonitoringContext : This true/false value sets whether to include the monitoring events and
performance data. This also passes the data onto MOM if the MOM agent is installed.

 MonitoringInstance : Used in conjunction with MonitoringContext . This parameter is a
true/false value and determines whether to run the cmdlet as the current user.

 ResetTestAccountCredentials : Resets the test account password. This may become
 necessary if the cmdlet errors out due to password issues.

 TrustAnySSLCertificate : Accepts any SSL certificate that is sent during the ActiveSync test.

 URL : Used to specify the URL used for ActiveSync.

 UseAutodiscoverForClientAccessServer : Boolean value to determine if the cmdlet should
query Autodiscover to find a CAS server.

 The following are the steps of a Test-ActiveSyncConnectivity connection:

 1. Connect to the CAS server and issue HTTP OPTIONS to retrieve Exchange ActiveSync, EAS,
protocol version.

 2. Perform a FolderSync command and get the folder hierarchy.

 3. Issue a First Sync command to initialize the partnership to the test folder.

 4. Issue a GetItemEstimate command and retrieve the number of items to sync.

 5. Perform synchronization against the test folder.

 6. Execute the Ping command to test DirectPush . A test item is created in the test folder to
 instantiate the Ping.

 7. Sync the newly created test item.

 To check multiple CAS servers you can use Get-ExchangeServer to find all servers with the CAS role
installed, and then construct a foreach loop to test the connectivity of each CAS server to the mailbox
server. The script is similar to the Test-ServiceHealth script described earlier in the chapter:

$b=Get-ExchangeServer | where {$_.IsClientAccessServer -eq”true”}
foreach ($z in $b) {test-ActiveSyncConnectivity -ClientAccessServer $z}

 Figure 14 - 9 shows a successful test of connectivity from the CAS role on MB002 to the Mailbox role on
MB002 and MB001.

 An easier way to do this is to use Get-ClientAccessServer | Test-ActiveSyncConnectivity .

❑

❑

❑

❑

❑

❑

❑

❑

❑

c14.indd 401c14.indd 401 12/17/07 4:04:18 PM12/17/07 4:04:18 PM

Part III: Working with PowerShell in a Production Environment

402

 Test - OwaConnectivity
 OWA connectivity is very important for the mobile workforce or for remote users who do not need all
the features of Outlook. In Exchange 2007 OWA has undergone a major facelift in order to close the gap
between the online web application and Outlook. As the OWA development team continues to work on
closing the feature gap, OWA will continue to gain favor in the user base.

 This cmdlet, by default, tests all the virtual directories on a CAS server. No input parameters are
 necessary to conduct a basic test.

 The following is a list of parameters available for this cmdlet:

 AllowUnsecureAccess : Boolean values that if set runs the cmdlet against virtual directories
that do not use SSL.

 ClientAccessServer : Designates which CAS server to perform the test against. This
 parameter cannot be used in conjunction with the URL parameter. If this parameter is specified,
it tests only Exchange 2007 virtual directories. Exchange 2000 and 2003 virtual directories as well
as non 2007 mailboxes will not be tested.

 DomainController : Sets the DC to query.

 MailboxCredential : User that the cmdlet should attempt to synchronize against. If no
user is specified, the CAS user is used. If this parameter is used, use the UPN of the user. Using
 MailboxCredential:(Get-Credential test@exchangeexchange.local) prompts for the
password of the user ‘test’. Once the password is entered, the test cmdlet will run.

 MailboxServer : Mailbox server that contains the mailbox to test. If no server is specified,
 connectivity to all mailbox servers will be tested.

❑

❑

❑

❑

❑

Figure 14-9

c14.indd 402c14.indd 402 12/17/07 4:04:18 PM12/17/07 4:04:18 PM

Chapter 14: Troubleshooting Exchange Issues

403

 MonitoringContext : This true/false value sets whether to include the monitoring events and
performance data. This also passes the data onto MOM if the MOM agent is installed.

 ResetTestAccountCredentials : Resets the test account password. This may become
 necessary if the cmdlet errors out due to password issues.

 TestType : Used to set whether to test the internal or external URL. The cmdlet retrieves the
internal and external URL from OwaVirtualDirectory ’ s InternalUrl and ExternalUrl . If you
use this parameter and the cmdlet ’ s result is skipped, this is most likely because that URL was
not set. See Chapter 6 for information on how to use the Get and Set-OwaVirtualDirectory
cmdlets. TestType cannot be used in conjunction with URL .

 TrustAnySSLCertificate : Accept any SSL certificate that is sent during the connectivity test.

 URL : This parameter specifies the OWA URL to test. If used, the cmdlet tests only this URL. This
parameter cannot be used in conjunction with ClientAccessServer or TestType .

 VirtualDirectoryName : Specifies the virtual directory name to test. If this parameter is not
used, the cmdlet tests all Exchange 2007 virtual directories. Exchange 2000 and 2003 virtual
directories and mailboxes will not be tested.

 The connection steps for this cmdlet are short. All testing is performed by connecting to the website,
 logging in, and verifying the webpage. Figure 14 - 10 shows an OWA connectivity test using the
 administrator account. The authentication method returned from the Client Access Server is forms based
authentication, FBA, against the Client Access Server MB002.exchangeexchange.local. The result of the
logon scenario was successful and was performed of a secure link, defined under SecureAccess.
 Additional information returned shows whether the access was to the internal or external URL as well as
the exact URL that was used. All of this is useful when attempting to troubleshoot CAS logon failures or
to isolate failure to a specific server.

❑

❑

❑

❑

❑

❑

Figure 14-10

c14.indd 403c14.indd 403 12/17/07 4:04:19 PM12/17/07 4:04:19 PM

Part III: Working with PowerShell in a Production Environment

404

 Testing the Web Services with
Test - WebServicesConnectivity

 This cmdlet ’ s name is a bit of a misnomer because there are several other test cmdlets that test web
 service connectivity. The cmdlets test the functionality of Outlook Anywhere. Exchange 2003 used
the term RPC instead of HTTP; however in 2007 it has been renamed to something a little more
marketing friendly.

 The following is a list of parameters available for this cmdlet:

 AllowUnsecureAccess : Necessary if you are not using SSL.

 ClientAccessServer : Specify the CAS server that the cmdlet will test against.

 MailboxCredential : User that the cmdlet should attempt to synchronize against. If no user
is specified the CAS user is used. Using MailboxCredential:(Get-Credential test@
exchangeexchange.local) will prompt for the password of the user ‘test’. Once the
 password is entered, the test cmdlet runs.

 MailboxServer Mailbox : Server that contains the mailbox to test. If no server is specified,
 connectivity to the local mailbox server will be tested.

 MonitoringContext : This true/false value sets whether to include the monitoring events and
performance data. This also passes the data onto MOM if the MOM agent is installed.

 ResetTestAccountCredentials : Resets the test account password. This may become
 necessary if the cmdlet errors out due to password issues.

 TrustAnySSLCertificate : Accept any SSL certificate that is sent during the
 WebServicesConnectivity test.

 UseAutodiscoverForClientAccessServer : Boolean value to determine whether the cmdlet
should query Autodiscover to find a CAS server.

 This cmdlet works well with pipeline input. It will display the CAS server as well as the Mailbox server
name.

Get-ClientAccessServer | Test-WebServicesConnectivity

 The following are the steps that the Test-WebServicesConnectivity cmdlet uses:

 1. Issues a GetFolder call to retrieve the folder.

 2. Issues a SyncFolderItems to synchronize the folder ’ s items.

 3. Creates an item in the folder.

 4. Issues a SyncFolderItems to resynchronize the folder ’ s items.

 5. Issues a DeleteItem to remove an item from the folder.

 6. Issues a SyncFolderItems to resynchronize the folder ’ s items.

 The cmdlet tests the latency in getting items, creating, deleting, and then synchronizing after each step.
Read, Write, Delete, and Synchronize are the basic functions that Outlook Anywhere users will perform.

❑

❑

❑

❑

❑

❑

❑

❑

c14.indd 404c14.indd 404 12/17/07 4:04:19 PM12/17/07 4:04:19 PM

Chapter 14: Troubleshooting Exchange Issues

405

 Troubleshooting the Mailbox Server
Role Functions

 The following cmdlets are discussed for testing MAPI connectivity:

 Test-MapiConnectivity

 Test-Mailflow

 Test-ExchangeSearch

 Troubleshooting MAPI Connectivity
 The Test-MapiConnectivity cmdlet checks connectivity to the mailbox layer. Mailbox availability is a
very important statistic because some service level agreements (SLA) are written to the uptime of the
mailbox. The cmdlet tests two very important features. The first is the Active Directory (AD) health,
which is tested through AD queries via DSAccess. The second test is the MAPI connectivity to the
 mailbox, which tests access to the information store, storage group, the mailbox database, and down to
the mailbox. Like the other test cmdlets, this cmdlet requires no options in order to run.

 The following is a list of parameters available for this cmdlet:

 Database : Specifies which database to test connectivity to. If no parameter is specified, the
cmdlet tests all databases on the server.

 Identity : Specifies which user mailbox to test. The following values are accepted for
the Identity parameter:

❑ GUID

❑ Distinguished name (DN)

❑ Domain\account

❑ User principal name (UPN)

❑ Legacy DN

❑ Simple Mail Transfer Protocol Address (SMTP)

❑ Alias

 If the Identity parameter is not used, the cmdlet will use the SystemMailbox on each
database.

 ActiveDirectoryTimeout : By default this value is set to 15 seconds. This setting determines
how long to wait on AD to return results before timing out.

 AllConnectionsTimeout : Specifies the total connection time for all transactions to complete
before timing out. This timer begins once all pertinent information is received from AD.

 DomainController : Sets the DC to query.

 MonitoringContext : Boolean value that specifies whether to include events and performance
objects of the MAPI transaction.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

c14.indd 405c14.indd 405 12/17/07 4:04:19 PM12/17/07 4:04:19 PM

Part III: Working with PowerShell in a Production Environment

406

 PerConnectionTimeout : By default this parameter is set to 10 seconds. This parameter is for
each transaction.

 Server : Specifies which server to test MAPI connectivity against. When the Server parameter
is used, the cmdlet tests connectivity to the system mailbox within each database on the speci-
fied server.

 To test all mailbox servers in the organization, use Get-MailboxServer | Test-MapiConnectivity ,
as shown in Figure 14 - 11 .

❑

❑

Figure 14-11

 Testing Mailflow
 Using the Test - Mailflow cmdlet allows the Exchange administrator to test mail connectivity to the
local mailbox server, between servers in the forest, or even to an external email address. If no parameters
are specified, the cmdlet sends and receives mail to the local machine.

 The following is a list of parameters available for this cmdlet:

 AutoDiscoverTargetMailboxServer : Uses the Autodiscover service to request a list of all
mailbox servers from AD and then sends a test email to each mailbox server that was returned
from the Autodiscover service.

 TargetEmailAddress : Used to specify the SMTP address of a remote mailbox. An email will
be sent to the remote user ’ s mailbox. This is useful for testing connectivity through the Internet.

❑

❑

c14.indd 406c14.indd 406 12/17/07 4:04:20 PM12/17/07 4:04:20 PM

Chapter 14: Troubleshooting Exchange Issues

407

 TargetMailboxServer : Tells the cmdlet which mailbox servers to send test messages to.

 ActiveDirectoryTimeout : By default this value is set to 15 seconds. This setting determines
how long to wait on AD to return results before timing out.

 DomainController : Sets the DC to query.

 ErrorLatency : Used by MOM to determine if there is excessive latency. The response times for
a local test are 15 seconds by default and 180 seconds for mail submitted to a remote server.

 ExecutionTimeout : Specifies how long to the cmdlet will run and wait for a response before
the task times out. By default an interactive session will wait 240 seconds (4 minutes) before
issuing a failure. When used in conjunction with the MonitoringContext , the default is set to
15 seconds.

 Identity : The mailbox server or a valid SMTP address. If no parameter is set, the cmdlet will
use the local mailbox server.

 MonitoringContext : This true/false value sets whether to include the monitoring events and
performance data. This also passes the data onto MOM if the MOM agent is installed.

 TargetEmailAddressDisplayName : Sets the display name of the mailbox where the test email
is delivered.

 Figure 14 - 12 shows a Test-Mailflow to the local server.

❑

❑

❑

❑

❑

❑

❑

❑

Figure 14-12

c14.indd 407c14.indd 407 12/17/07 4:04:20 PM12/17/07 4:04:20 PM

Part III: Working with PowerShell in a Production Environment

408

 Testing the Exchange Search Service
 In previous editions of Exchange, the database index was created within a schedule. Therefore, the index
was no longer current and as new mail arrived, it would not be introduced into the index until the next
indexing cycle. Exchange 2007 updates the index every time a new message is received into the database.
Windows Mobile 6, OWA, and Outlook users all query against the database index, so it is more impor-
tant that the index always be up to date. This is where the Test-ExchangeSearch cmdlet comes in; it
will insert an email into the mailbox, wait for the index to be updated, and then search the index for the
test message. If the content of the message is not found, or the index timeout is exceeded, the cmdlet will
issue a failure. If no mailbox is specified, the cmdlet will use the system mailbox.

 The following is a list of parameters available for this cmdlet:

 DomainController : Sets the DC to query.

 Identity: Specifies which user mailbox to test. The following values are accepted for
the Identity parameter:

❑ GUID

❑ Distinguished name (DN)

❑ Domain\account

❑ User principal name (UPN)

❑ Legacy DN

❑ Simple Mail Transfer Protocol Address (SMTP)

❑ Alias

 IndexingTimeout : The timer for this parameter starts once the message is inserted into the
mailbox. Timeout value specifies the amount of time to wait for the transaction to complete. By
default this is set to 2 minutes.

 MonitoringContext : This true/false value sets whether to include the monitoring events and
performance data. This will also pass the data onto MOM if the MOM agent is installed.

 Server : Specifies the mailbox server to test.

 The cmdlet can be executed from pipelined input, but in doing so it will not display the mailbox server ’ s
name. In an organization with more than one mailbox server, this would be problematic. So using a
 foreach loop to print the mailbox server ’ s name with the output from the Test-ExchangeSearch
will work:

 $mbx=Get-MailboxServer
 Foreach ($mbxname in $mbx) {echo $mbxname.name (test-exchangesearch -server
$mbxname) | fl}

❑

❑

❑

❑

❑

c14.indd 408c14.indd 408 12/17/07 4:04:20 PM12/17/07 4:04:20 PM

Chapter 14: Troubleshooting Exchange Issues

409

 Troubleshooting Edge Synchronization
 This section discusses the single Edge test cmdlet:

 Test-EdgeSynchronization

 The Test - EdgeSynchronization cmdlet tests synchronization of Edge servers. Edge servers use an
ADAM (Active Directory Application Mode) instance instead of connecting to AD directly. Edge servers
are not in the domain, so any information that is needed for messaging or recipients, connectors, and
anti - spam is stored in ADAM. The ADAM instance periodically updates its cache against AD to prevent
stale data and to improve response time. This cmdlet needs to be run against a server that has the Hub
role installed.

 The following is a list of parameters available for this cmdlet:

 DomainController : Sets the DC to query.

 ExcludeRecipientTest : Boolean value that if set to true ignores the recipient objects and
queries only the configuration objects for validity.

❑

❑

❑

 Figure 14 - 13 shows the results for the foreach script. If the $mbxname.name is omitted, the test results
will not map an index search response time to a server, and this can become messy in larger
environments.

Figure 14-13

c14.indd 409c14.indd 409 12/17/07 4:04:21 PM12/17/07 4:04:21 PM

Part III: Working with PowerShell in a Production Environment

410

 MaxReportSize : Specifies how many results will be included on the report. The report
includes all objects and properties in the ADAM instance and AD that are out of sync. By default
the -MaxReportSize is 1,000 entries.

 MonitoringContext : This true/false value sets whether to include the monitoring events and
performance data. This will also pass the data onto MOM if the MOM agent is installed.

 Troubleshooting Unified Messaging
Connectivity

 This section discusses using the Unified Messaging test cmdlet to determine UM Health:

 Test-UMConnectivity

 The Test - UMConnectivity cmdlet tests the UM (Unified Messaging) component of Exchange 2007.
Because Unified Messaging and telephony may be new to some Exchange administrators, this cmdlet
should provide some comfort in troubleshooting the new component. The cmdlet has two different test
patterns. The first test pattern tests only the UM role. The second test, which is more comprehensive, is
instantiated via the -IPGateway parameter, and tests connectivity across the entire UM infrastructure.
The UM server, IP Gateway, and the PBX will be tested in the second test.

 The following is a list of parameters available for this cmdlet:

 Phone : The extension that is used when the test call is redirected. This extension should be
 configured to forward calls to the UM hunt group.

 PIN : This parameter specifies the PIN for the UM - enabled mailbox.

 TUILogon : Boolean value that if set to true notifies the cmdlet to log in to the UM - enabled
mailboxes. Any mailboxes in the test must be in the same dial plan as the UM server. By default
this parameter is set to false . If this parameter is used, UMDialPlan , Phone , and PIN must also
be specified.

 TUILogonALL : Similar to TUILogon but attempts to log on to every UM - enabled mailbox in the
AD site. By default this parameter is set to false .

 UMIPGateway : The IP address of the IP gateway to test. If this value is set, the phone parameter
must also be used.

 UMDialPlan : The UM dial plan that is to be tested. If this parameter is used, Phone , PIN , and
 TUILogon must also be specified.

 DomainController : Sets the DC to query.

 Fax : Boolean value to set the cmdlet to run the test as a fax instead of a voice call. This is true by
default.

 ListenPort : By default the listening port is set to 9,000. If a different port is needed, set it here.

 MonitoringContext : This true/false value sets whether to include the monitoring events and
performance data. This also passes the data onto MOM if the MOM agent is installed.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

c14.indd 410c14.indd 410 12/17/07 4:04:21 PM12/17/07 4:04:21 PM

Chapter 14: Troubleshooting Exchange Issues

411

 Secured : Boolean value that sets the cmdlet to run in an encrypted mode. If your IP gateway is
not set to take encrypted communications, setting this value causes the cmdlet to error out.

 Timeout : Period of time for the cmdlet to run. By default this parameter is set to 180 seconds.

 ResetPIN: Boolean value to reset the PIN for any of the specified mailboxes.

 Figure 14 - 14 shows testing UM connectivity.

❑

❑

❑

Figure 14-14

 Using Get and Set Cmdlets to Gather
System and Application Data

 This section discusses using the following cmdlets to retrieve system and application data:

 Get-Eventlog

 Get-Message

 Get-MessageTrackingLog

 Get-EventLogLevel

 Set-EventLogLevel

❑

❑

❑

❑

❑

c14.indd 411c14.indd 411 12/17/07 4:04:21 PM12/17/07 4:04:21 PM

Part III: Working with PowerShell in a Production Environment

412

 Using Get - Eventlog
 The Get-Eventlog cmdlet reads any of the event logs stored on the local computer. It is a very powerful
and flexible cmdlet that can be used to parse event logs without complex scripting. If you have created a
custom event log source, this cmdlet can parse them. Do you need to look for a particular word inside an
event? This script will find it. Do you want all the logs from a particular day conveniently exported to a
CSV file for further analysis? This is your cmdlet.

 The following is a list of parameters available for this cmdlet:

 logName : This is a required parameter. It indicates which log file the cmdlet is to run against.

 list : Shows all of the event logs on the system, their current size, retention setting, their
 overflow action, and the number of entries in each log.

 asString : Creates the output as a string as opposed to a series of objects.

 newest : Tells the cmdlet to retrieve a specified number of events.

 Figure 14 - 15 shows the output of Get-Eventlog Newest 10 . It is running against the Application log.

❑

❑

❑

❑

Figure 14-15

c14.indd 412c14.indd 412 12/17/07 4:04:22 PM12/17/07 4:04:22 PM

Chapter 14: Troubleshooting Exchange Issues

413

 Let ’ s take one event and explore all of the fields that are available for manipulation. To do this you
select one event by setting the Index value equal to 4405 and the use | fl to expand the output. The
 command looks as follows:

Get-EventLog -LogName Application | where {$_.Index -eq”4405”} | fl

 The results of the cmdlet are displayed in Figure 14 - 16 .

Figure 14-16

 The following fields can be queried by the cmdlet:

 Index

 Message

 ReplacementStrings

 TimeWritten

 EntryType

 Category

 Source

 EventID

 CategoryNumber

 TimeGenerated

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

c14.indd 413c14.indd 413 12/17/07 4:04:22 PM12/17/07 4:04:22 PM

Part III: Working with PowerShell in a Production Environment

414

 If you had an application hang, but could not find it because you forgot the event id, you could query
the Application log to search all events and retrieve any event that had “ Hanging ” in the message. You
may be tempted to use the Contains parameter but in doing so you must match the exact message.
Contains is similar to Equals . If you do not have the exact message you are searching for, place
 wildcards in front of and behind the keywords you are searching for. The following query performs this
action and you can see Internet Explorer hang in the results of Figure 14 - 17 :

Get-EventLog -LogName Application | Where {$_.Message -like”Hanging*”} | fl

Figure 14-17

 To retrieve all errors from the system log for a particular day, the cmdlet used in Figure 14 - 17 can be
modified to use TimeGenerated and EntryType to specify the new search parameters. The LogName
value has also been switched from Application to System . (See Figure 14 - 18 .)

 Lastly, to export data from this cmdlet or from any cmdlet, pipeline the cmdlet to export-csv and
 specify the .csv filename. The output is redirected to the .csv file and will not display on the screen.
From there, the .csv file can be loaded into Excel or programmatically inserted in SQL through a DTS
package or via Service Broker.

 Using Get - Message
 The Get-Message cmdlet provides the ability for the Exchange administrator to view the message
queue through PowerShell. Imagine this as your scriptable queue viewer across the enterprise. The
 cmdlet runs against a Hub or Edge server and can be used to look at the queue of a remote server. If no
parameters are specified, the cmdlet attempts to run against the local machine. Also by default the result
size is limited to 1,000 entries.

c14.indd 414c14.indd 414 12/17/07 4:04:22 PM12/17/07 4:04:22 PM

Chapter 14: Troubleshooting Exchange Issues

415

 The following is a list of parameters available for this cmdlet:

 BookmarkIndex : Used to specify a position from within the result set that the displayed
results are sent to the output device. This parameter cannot be used in conjunction with the
BookmarkObject parameter.

 BookmarkObject : Similar to BookmarkIndex but is used to specify an object in lieu of a
position.

 Filter : This parameter is used to specify what parameter is used to filter the query. Filter is
used in conjunction with a comparison operator. The filter parameters are listed below:

❑ DateReceived : Date the message was received.

❑ ExpirationTime : Time the message expires.

❑ FromAddress : SMTP address of the sender.

❑ Identity : Message option, server handler, and queue identifier.

❑ InternetMessageId : Value from the Message - ID of the email header.

❑ LastError : Last error present for the message.

❑ MessageSourceName : Name that is used for the component that submits the message to
the queue. If the cmdlet is run locally, the MessageSourceName will be ‘FromLocal’.

❑ Queue : Name of the queue that contains the messages. Formatted in the server\destination
format.

❑

❑

❑

Figure 14-18

c14.indd 415c14.indd 415 12/17/07 4:04:23 PM12/17/07 4:04:23 PM

Part III: Working with PowerShell in a Production Environment

416

❑ RetryCount : Number of times delivery was attempted.

❑ SCL : Spam confidence level. Valid values are – 1 to 9.

❑ Size : Represented in bytes.

❑ SourceIP : IP address of the originating server.

❑ Status : Current status. The following are acceptable values: Active , Retry , Suspended ,
 P endingSuspend , and PendingRemove .

❑ Subject : Text present in the subject of the email.

 Identity: Can be one of the following:

❑ Server\QueueIdentity\MessageIdentity

❑ QueueIdentity\MessageIdentity

❑ Server*\MessageIdentity

❑ MessageIdentity

 IncludeBookmark : Boolean value used to specify if the bookmark object is included in the
result set. This parameter can be used with BookmarkObject or BookmarkIndex parameters.

 IncludeRecipientInfo : If this value is used, the values from the recipients filed in the email
will be displayed. The following are valid recipient values:

❑ Address : SMTP address of the recipient.

❑ Type : Recipient type. Either External, Mailbox, or a Distribution List (DL).

❑ FinalDestination : Distinguished name (DN) that is used to route the message. This can
be a connector mailbox server or an expansion server.

❑ Status : Can be one of the following: Complete, Ready, or Retry.

❑ LastError : SMTP response from the last attempted delivery.

 Queue : Queue name of the queue that contains the messages. Formatted in the server\destina-
tion format.

 ResultSize : By default this value is set to 1,000 but can go up to 250,000.

 ReturnPageInfo : Boolean value that is a hidden parameter. It can be used to gather the current
number of results.

 SearchForward : This parameter is used to specify whether to search forward or backward
within a result set. By default it will search forward. It calculates the value based on forward or
backward search and then from the start of the result set or from the bookmark location if used.

 Server : The FQDN of the remote server that you are attempting to query. If this parameter is
not used, the cmdlet executes against localhost.

 SortOrder : Allows for manipulation of the result set. By setting a + or - in front of a property,
the property ’ s values are sorted by ascending or descending order. If multiple properties are to
be sorted, separate each property with a comma.

❑

❑

❑

❑

❑

❑

❑

❑

❑

c14.indd 416c14.indd 416 12/17/07 4:04:23 PM12/17/07 4:04:23 PM

Chapter 14: Troubleshooting Exchange Issues

417

 In Figure 14 - 19 , the Get-Message is run against a remote server.

 The filtering section may be a bit confusing at first, but it is similar to any other cmdlet that uses a
 comparison to qualify the search and produce specific results. This script shows all messages on the local
server that are in a ready status and sorts them by size. The results are shown in Figure 14 - 20 . If you
e xecute the same script again and use format-list (|fl) you can see what the last error was and help
troubleshoot why these messages are still in queue.

 Figure 14 - 21 shows using Format-List in more detail.

 Tracking Messages
 Every message that is routed through Exchange Server 2007 has the route it takes through the system
stored in a message tracking log. Tracking logs exist of Hub, Edge, and mailbox server. As a message
 traverses the Exchange organization, each hop that it takes through a transport server is updated in a
message tracking log. The tracking log is a good place to start when there are reported mail delivery
problems or as a proactive measure to test mail flow through the organization.

 The following is a list of parameters available for the Get-MessagesTrackingLog cmdlet:

 DomainController : Sets the DC to query.

 End : Setting this parameter notifies the cmdlet to send log items up to, but not including, the
end date.

 EventId : Scrapes the tracking log of specified event categories. The following are valid search
terms: BadMail , Defer Deliver , DSN , Expand , Fail , PoisonMessage , Receive , Redirect ,
 Resolve , Send , Submit , and Transfer .

❑

❑

❑

Figure 14-19

c14.indd 417c14.indd 417 12/17/07 4:04:24 PM12/17/07 4:04:24 PM

Part III: Working with PowerShell in a Production Environment

418

Figure 14-20

Figure 14-21

c14.indd 418c14.indd 418 12/17/07 4:04:24 PM12/17/07 4:04:24 PM

Chapter 14: Troubleshooting Exchange Issues

419

 InternalMessageId : Returns all message tracking log entries that meet the pattern specified.
 InternalMessageId is unique across each server.

 MessageId : Returns all message tracking log entries that contain the specified Message - ID field
from within the message header.

 MessageSubject : Returns all message tracking log entries that contain the specified Subject
from with the message header.

 Recipients : Returns all message tracking log entries that contain the specified recipient ’ s
SMTP address. To specify multiple recipients separate the values with a comma.

 Reference : Returns all message tracking log entries that contain the specified value in the
 reference field. The following are valid search items: Send , Transfer , and DSN .

 ResultSize : Sets the number of results to display. By default 1,000 entries will be displayed.
If you need to see all results for a particular query, set the ResultSize to unlimited.

 Sender : Returns all message tracking log entries that contain the specified sender ’ s SMTP
address.

 Server : Specifies the server to request tracking logs from. This value can be the server name,
FQDN, DN, Legacy DN, or the GUID of the server. If this parameter is not specified, the cmdlet
executes against the local machine.

 Start : Specifies the date and time that the results will start from.

 Figure 14 - 22 shows the base output of Get-MessageTrackingLog .

❑

❑

❑

❑

❑

❑

❑

❑

❑

Figure 14-22

c14.indd 419c14.indd 419 12/17/07 4:04:25 PM12/17/07 4:04:25 PM

Part III: Working with PowerShell in a Production Environment

420

 Figure 14 - 23 shows how to use the EventId to retrieve all the DSN notifications from the message
 tracking logs from the local server.

Figure 14-23

 Working with Event Logging Levels
 When you are troubleshooting a problem it is important to log the correct data to the event log.
To determine what level of logging is taking place use the Get-EventLogLevel cmdlet. There are two
parameters that can be specified but cannot be used together:

 Server : Specifies the server to retrieve event log categories for.

 Identity : Specifies the ECIdParameter . The ECIdParameter is the identity of the individual
Exchange component. Figure 14 - 24 shows some of the ECId parameters and their current
 logging levels.

 The Set-EventLogLevel cmdlet sets the diagnostic logging levels of the individual Exchange
 components. Use of this command will manipulate the verbosity of the logging of events in the
 Application log. This is useful for when troubleshooting Exchange issues. OALGen even writes an event
to the Application log if there were errors created during generation, and specifies to turn up the logging
for that particular parameter! After you have set the logging level on any of the parameters, you can then
use Get-EventLog to gather the new information from the Application log.

❑

❑

c14.indd 420c14.indd 420 12/17/07 4:04:25 PM12/17/07 4:04:25 PM

Chapter 14: Troubleshooting Exchange Issues

421

 There are two parameters for this cmdlet:

 Identity : Specifies the ECIdParameter . The ECIdParameter is the identity of the individual
Exchange component. To get a list of all the ECId parameters, run the Get-EventLogLevel
cmdlet.

 Level : Sets the logging level for the identity. There are five levels of logging, starting with the
least logging:

❑ Lowest

❑ Low

❑ Medium

❑ High

❑ Expert

❑

❑

Figure 14-24

c14.indd 421c14.indd 421 12/17/07 4:04:25 PM12/17/07 4:04:25 PM

Part III: Working with PowerShell in a Production Environment

422

 Figure 14 - 25 shows setting the Event log leveling to medium on the MSExchangeSA\OAL Generator.

Figure 14-25

 Summary
 The Test-* cmdlets explained in this chapter provide a wealth of troubleshooting cmdlets to assist in
troubleshooting and configuration management. Providing the Exchange administrator a resource to
test connectivity and response times for individual components, across server roles, and for external
 connectivity in an automated fashion is something that has only been available in higher - end monitoring
systems. The scriptability of these cmdlets allows for their flexible framework to be manipulated for
whatever test the Exchange administrator can think of. Plus, with the openness of such cmdlets as
Get-EventLog or Get-MessageTrackingLog the flexibility to perform complex analysis with only a
few lines of code is very cool indeed. The Exchange team was the first at Microsoft to ship a product that
uses PowerShell as the basis for its administration. The standard has been set, the reviews are in, and
people love it. Now they will have to see how quickly they can integrate it into all their products.

c14.indd 422c14.indd 422 12/17/07 4:04:26 PM12/17/07 4:04:26 PM

Part IV

Automating
Administration

Chapter 15: User, Group, and Public Folder Administration

Chapter 16: Reporting, Maintenance, and Administration

Chapter 17: Using the .NET Framework to Automate Exchange
PowerShell Tasks

c15.indd 423c15.indd 423 12/17/07 4:05:17 PM12/17/07 4:05:17 PM

c15.indd 424c15.indd 424 12/17/07 4:05:17 PM12/17/07 4:05:17 PM

 User, Group, and Public
Folder Administration

 All good administrators know scripts are used to automate everyday tasks and ensure consistent
results with a minimum of effort. The built - in scripting capabilities of Windows PowerShell, and
by extension Exchange Management Shell, offer a level of control previously unavailable when
using administrative tools supplied in earlier versions of Exchange Server.

 This chapter examines these scripting capabilities via a thorough examination of sample
administrative scripts, starting at a basic level and expanding to scripts that accomplish more
complex tasks.

 This chapter explores scripts that complete these tasks:

❑ Mailbox - enable users

❑ Assign group membership based on user attributes

❑ Load - balance mailbox creation across databases based on user names

❑ Create a public folder for a user

 Sample Scripts for Creating New
Mailbox - Enabled Users

 One of the best examples of an administrative task easily automated via scripting is the creation of
new mailbox - enabled user accounts.

 This section covers four sample scripts for automating the creation of new mailbox - enabled accounts.
The first script is very simple and covers the basics you need to know when creating a script that
uses Exchange Management Shell commands. A second script expands on the first to add error

c15.indd 425c15.indd 425 12/17/07 4:05:17 PM12/17/07 4:05:17 PM

Part IV: Automating Administration

426

control and advanced techniques for developing a more comprehensive solution. A third script extends the
second by adding automated group membership based on department and office attributes. A fourth script
takes things a step further and automates database selection based on the last name of the new user.

 The scripts in this section use these cmdlets:

❑ Read-Host

❑ New-Mailbox

❑ Import-Csv

❑ Write-Host

❑ Out-File

❑ Test-Path

❑ Write-Progress

❑ Set-User

❑ Add-DistributionGroupMember

❑ Get-DistributionGroup

 The Simple Script
 The sample script simplebulk-newmailbox.ps1 creates mailbox - enabled user accounts based on the
contents of a comma - separated value (CSV) file created by the administrator. The script is run by
entering its name followed by the path to the CSV file used as input. The administrator is prompted once
to enter a secure temporary password that is set on each account as it is created. The results are
displayed at the command line as the default output from the underlying Exchange Management Shell
command used in the script to create the mailboxes.

 The following code shows the contents of script file simplebulk-newmailbox.ps1 :

simplebulk-newmailbox.ps1

Input parameter
param([string]$CSVUpath)

Prompt for the master password to set on the new mailbox enabled accounts
$password = (Read-Host -AsSecureString “Enter Password”)

Read input from the CSV file
$users = (Import-Csv $CSVUpath)

Create the mailbox enabled accounts
foreach ($user in $users)
 {
 New-Mailbox -Name:$user.name -Database:$user.Database
-OrganizationalUnit:$user.OrganizationalUnit
-UserPrincipalName:$user.UserPrincipalName -Password:$password
-ResetPasswordOnNextLogon:$true
 }

c15.indd 426c15.indd 426 12/17/07 4:05:18 PM12/17/07 4:05:18 PM

Chapter 15: User, Group, and Public Folder Administration

427

 For analysis, this script is broken down into four segments, each marked with a comment line (using the
 # character) to describe what the segment does. The following paragraphs explain how each segment
works and are followed by the specific segment of code they describe.

 The first code segment uses the param keyword to specify the input parameter value to set on variable
 $CSVUpath . This variable holds the path of the CSV file containing the information to be used for
creating the mailbox - enabled user accounts. The $CSVUpath variable is cast as a string data type by the
use of the [string] prefix. The user must enter the full CSV file path value following the script name
when running the script.

Input Parameter
param([string]$CSVUpath)

 The next code segment creates a variable to store a master secure password value to set on each
Active Directory account created by New-Mailbox . A value with data type of System.Security
.SecureString is required by New-Mailbox . The Read-Host cmdlet provides the AsSecureString
parameter to allow the creation of a SecureString object. The execution of this command displays
 Enter Password: as a prompt on the command line and then pauses for input.

 As the administrator types a password value, each key press results in the display of an asterisk (*)
character to obfuscate the value. Pressing Enter stores the password value as a SecureString object in
the $password variable. Note that the password entered must meet the password complexity
requirements enforced by the Active Directory group policy applied to the domain where the accounts
are to be created or the script will fail.

Prompt for the master password to set on the new mailbox enabled accounts
$password = (Read-Host -AsSecureString “Enter Password”)

 This next code segment creates a variable to store objects based on values read from the CSV file
specified in variable $CSVUpath . The Import-Csv cmdlet reads the file and stores each line as an object
in the variable $users . The property names are determined by the header structure of the CSV file,
which is covered in more detail later in this section. If the content structure of the CSV file does not
match what is expected by Import-Csv or if the file is not found, the command fails.

Read input from the CSV file
$users = (Import-Csv $CSVUpath)

 The last code segment is where the bulk of the work is actually done and the mailbox - enabled accounts
are created using the cmdlet New-Mailbox . This segment uses the foreach loop command to iterate
(step through) a collection of items, in this case the objects stored previously in the $users variable. The
syntax of foreach is as follows:

foreach ($ < item > in $ < collection >) {command_block}.

 The command executes the contents of the script block on each object in the collection one at a time.
Simply stated, the foreach command in the sample script does this: for each individual object ($user)
in a collection of objects ($users), execute the script block (New-Mailbox...).

 The $user variable represents the current object being acted upon. Inside the script block, dot notation is
used to de - reference each object property value for that object. For example, $user.name is the name

c15.indd 427c15.indd 427 12/17/07 4:05:18 PM12/17/07 4:05:18 PM

Part IV: Automating Administration

428

property value for the current object, $user.database is the database property value, and so on.
The property names are determined by the header values used in the CSV file.

 The Password property value is provided by the $password variable created earlier in the script. The
script uses the minimum parameters required by New-Mailbox to successfully create a mailbox - enabled
user account, plus the ResetPasswordOnNextLogon parameter to force the new users to set their own
passwords the first time they log in to the domain. This is a good administrative practice.

Create the mailbox enabled accounts
foreach ($user in $users)
 {
 New-Mailbox -Name:$user.name -Database:$user.Database `
 -OrganizationalUnit:$user.OrganizationalUnit `
 -UserPrincipalName:$user.UserPrincipalName -Password:$password `
 -ResetPasswordOnNextLogon:$true
 }

 Note the use of the grave accent character (̀) at the end of each line following the New-Mailbox cmdlet.
When this escape character is used at the end of a command line with no other character immediately
following, it instructs Windows PowerShell to continue reading the command line from the beginning of
the next line. This is a simple way to wrap long commands so they are more readable.

 More on Parameter Values
 When used in a script, parameter values for the New-Mailbox cmdlet can be supplied as part of a CSV
file, as prompted input from the command line when the script is run, or as a static value inside the script.
Some parameter values such as the ones used in the simplebulk-newmailbox.ps1 script are always
required by New-Mailbox and cannot be omitted. Some are optional and can be used according to their
need. There are certain parameters that are exclusive and cannot be used in conjunction with some others.

 The following table describes in detail the parameters for New-Mailbox as they relate to being used in a script.

 Parameter Description

 Required: these parameters must always be used and supplied in the CSV file unless otherwise noted.

 Name Must be unique.

 Database Must already exist.

 Password Must comply with length and complexity require-
ments. Not required when creating a disabled account
(linked, shared, room, and equipment mailboxes).

 OrganizationalUnit Must already exist.

 UserPrincipalName Should use valid UPN suffix (no validation).

 Recommended: you should use these parameters as best practice.

 FirstName Is null on the new account unless supplied in CSV file.

 LastName Is null on the new account unless supplied in CSV file.

c15.indd 428c15.indd 428 12/17/07 4:05:18 PM12/17/07 4:05:18 PM

Chapter 15: User, Group, and Public Folder Administration

429

 Parameter Description

 ResetPasswordOnNextLogon Use when creating enabled accounts. Allows new users
to set their own passwords the first time they log on.

 Optional: these parameters are not required and can only be used in certain combinations.

 Alias Is based on prefix of UserPrincipalName if not
supplied in CSV file.

 ActiveSyncMailboxPolicy Must already exist. Supply in CSV file.

 DisplayName Is based on Name if not supplied. Supply in CSV file.

 DomainController Use when you want to create the new accounts on a
specific Domain Controller. Prompt the user or use as a
static script element.

 Equipment Creates disabled account and equipment mailbox.
Cannot be used in conjunction with Room or Shared
parameters. Use as a script element.

 Initials Maximum length six characters. Supply in CSV file.

 LinkedDomainController Required when creating a linked mailbox. Prompt the
user or use as a static script element.

 LinkedMasterAccount Creates disabled account and linked mailbox. Supply
in CSV file.

 LinkedCredential Required to access the Domain Controller specified by
 LinkedDomainController . Prompt the user.

 ManagedFolderMailboxPolicy Must already exist. Supply in CSV file.

 ManagedFolderMailboxPolicyAllowed Use when specifying ManagedFolderMailboxPolicy .
Use as a script element.

 Room Creates disabled account and room mailbox. Cannot be
used in conjunction with Equipment or Shared
parameters. Use as a script element.

 SamAccountName Is based on prefix of UserPrincipalName if not
supplied in CSV file.

 Shared Creates disabled account and shared mailbox. Cannot
be used in conjunction with Room or Equipment
parameters. Use as a script element.

 TemplateInstance Use to create a new mailbox with configuration settings
based on an existing mailbox object. Use as a script
 element.

c15.indd 429c15.indd 429 12/17/07 4:05:18 PM12/17/07 4:05:18 PM

Part IV: Automating Administration

430

 The CSV File
 A CSV file is a data file made up of text stored in columns/fields separated by commas, and
rows/records separated by newlines (CR+LF). Spreadsheet applications are ideal for creating CSV files.
They allow administrators to populate information in a structured row/column format before saving
the results as a CSV file.

 The Import-Csv cmdlet requires the first row in a CSV file to contain the names for each column of
information. This first row is often referred to as the “ header. ” The names used in the header determine
the property names for the objects created when the CSV file is read by Import-Csv . Property names are
completely arbitrary but must not contain any spaces. For consistency, you should use names that
correspond to the cmdlet parameter names for which the property values are to be used as input.

 The following example shows the first few lines of a CSV file that could be used as input for the
 simplebulk-newmailbox.ps1 script. The header row contains the names of each individual property
required as input by New-Mailbox . Each line that follows the header represents an individual user
account that is to be created based on the given property values. Note that in this example the lines are
wrapped to fit the format of this page.

Name,Database,OrganizationalUnit,UserPrincipalName
User One,MB001\First Storage Group\Mailbox Database,exchangeexchange.local/
Users,user1@exchangeexchange.com
User Two,MB001\First Storage Group\Mailbox Database,exchangeexchange.local/
Legal,user2@exchangeexchange.com
User Three,MB001\First Storage Group\Mailbox Database,exchangeexchange.local/
Users,user3@exchangeexchange.com

 Running the Script
 To exhibit the behavior of the simplebulk-newmailbox.ps1 script, a CSV file has been constructed to
supply property values to create eight new mailbox - enabled user accounts, named User One through
 User Eight . Certain values have been used in the CSV file to ensure some failures to demonstrate the
shortcomings of a script that offers no error handling.

 The script file was placed in the Exchange scripts folder (by default C:\Program Files\Microsoft\
Exchange Server\scripts\) so it can be run from the current location of C:\ without the need to
provide the full path to the script. This is also a best practice for keeping track of your scripts by always
storing them in the same location on the server.

 Execution starts by entering the name of the script file followed by the path name of the CSV file. The
administrator is prompted to enter a password, after which the main script execution takes place. Each
time the New-Mailbox command embedded in the foreach loop is executed the results are displayed
on the console screen using the default output of the New-Mailbox cmdlet, as shown in the following
example output. This continues until all the objects in the $users variable have been processed.

c15.indd 430c15.indd 430 12/17/07 4:05:19 PM12/17/07 4:05:19 PM

Chapter 15: User, Group, and Public Folder Administration

431

[PS] C:\ > simplebulk-newmailbox.ps1 c:\users.csv
Enter Password: *********

Name Alias ServerName ProhibitSendQuo
 ta
---- ----- ---------- ---------------
User One user1 mb001 unlimited
Organizational unit “exchangeexchange.local/Legal” was not found. Please make sure
you have typed it correctly.
At C:\Program Files\Microsoft\Exchange Server\Scripts\simplebulk-newmailbox.ps1
:17 char:9
+ N < < < < ew-Mailbox -Name:$user.name -Database:$user.Database -Organiza
tionalUnit:$user.OrganizationalUnit -UserPrincipalName:$user.UserPrincipalName
-FirstName:$user.FirstName -LastName:$user.LastName -Password:$password -ResetP
asswordOnNextLogon:$true
User Three user3 mb001 unlimited
User Four user4 mb001 unlimited
User Five user5 mb001 unlimited
Database “MB001\Second Storage Group\Mailbox Database” was not found. Please ma
ke sure you have typed it correctly.
At C:\Program Files\Microsoft\Exchange Server\Scripts\simplebulk-newmailbox.ps1
:17 char:9
+ N < < < < ew-Mailbox -Name:$user.name -Database:$user.Database -Organiza
tionalUnit:$user.OrganizationalUnit -UserPrincipalName:$user.UserPrincipalName
-FirstName:$user.FirstName -LastName:$user.LastName -Password:$password -ResetP
asswordOnNextLogon:$true
User Seven user7 mb001 unlimited
User Eight user8 mb001 unlimited

 As you can see in the first line of output, User One has been created without issue as indicated by
the default output from New-Mailbox . However, creation of the next user has failed as per the error
message shown. In this case the error indicates the OrganizationalUnit property value passed to
 New-Mailbox did not exist in Active Directory. Creation of another user failed in a similar fashion
because the Database property value specified does not exist.

 The way these errors appear in the default output demonstrates one of the biggest weaknesses of this
simple version of a user creation script: error handling. You can probably recognize from this output that
 User Two and User Six have failed creation by the position of the error messages among the other
lines of output.

 Now imagine that a CSV file contains hundreds of entries, with real names instead of sequentially
numbered test accounts. Notice that the error messages contain no information about the object being
processed when failures occur. That means an administrator would have to search through the contents
of a CSV file to discover the users that have failed creation.

 The script also does a poor job of giving the administrator feedback when other errors occur. For
example, when an invalid CSV file path is specified, the standard error message for the underlying
command is displayed. In most cases this feedback is more cryptic than necessary and does not always
imply a corrective action to take.

c15.indd 431c15.indd 431 12/17/07 4:05:19 PM12/17/07 4:05:19 PM

Part IV: Automating Administration

432

 The next section explores an improved version of the simplebulk-newmailbox.ps1 script that
incorporates some advanced techniques to address the shortcomings of the simple script and provide a
more complete solution.

 The Improved Script
 The script bulk-newmailbox.v1.ps1 includes several improvements that make it a more robust
solution for creating new mailbox - enabled user accounts:

❑ Comments have been added to the header of the script to include Synopsis, Usage, and Example
information. This is always good practice, especially when sharing scripts with other
administrators.

❑ Error checking has been added to validate the path and format of the CSV file. The user is
prompted to take specific corrective action if there is not an existing file in the path given, or if
the file is not a properly formatted CSV file.

❑ The FirstName and LastName properties have been included as input from the CSV file. If
these values are not provided at the time of account creation, they remain blank. In most cases
this does not cause an issue. However, if you specify an email address policy that uses the first
and last name attributes to form an address (%g.%s@exchangeexchange.com), you would not
be able to stamp that address on these user accounts. As a good practice when creating mailbox -
 enabled user accounts you should always include first and last names when possible.

❑ The default output of New-Mailbox is suppressed. Instead, all output including errors are redi-
rected to a log file that can be used afterwards for diagnostic purposes. The information written
to the log identifies the objects being processed and any specific errors encountered.

❑ A progress bar is displayed during execution to indicate the current user being processed and
the percentage of users that have been processed overall.

 At first glance you may think that these improvements are going to be difficult to implement, but
actually you ’ ll be able to take advantage of functionality already provided by built - in commands. Once
you break the script down into its component pieces and look at them individually they are quite easy to
understand.

 The following code shows the contents of the script file bulk-newmailbox.v1.ps1 :

bulk-newmailbox.v1.ps1

Synopsis: This script creates one or more mailbox enabled user accounts based on
input values read from a comma separated value (CSV) file. This script
has to be run by an administrator who is a member of the Exchange
Recipient Administrators group.
#
The CSV file must contain these header values on the first line:
#
Name,Database,OrganizationalUnit,UserPrincipalName,FirstName,LastName
#
This script writes the results to log file bulk-newmailbox.log in the
home directory of the current user. New entries are appended to an
existing log file.

c15.indd 432c15.indd 432 12/17/07 4:05:19 PM12/17/07 4:05:19 PM

Chapter 15: User, Group, and Public Folder Administration

433

#
Usage: bulk-newmailbox.v1.ps1 < full path to CSV file >
#
Example: bulk-newmailbox.v1.ps1 c:\users.csv

param([string]$CSVUPath)

Turn off error reporting to the display
$ErrorActionPreference = “SilentlyContinue”

This function validates the path to the CSV input file
function ValidatePath
{
 $notValidPath = $false

 if ($CSVUPath -eq “”)
 {
 $notValidPath = $true
 Write-Host -fore yellow “`nYou must enter the full path to a CSV file to
use as input to this script.`n”
 return $notValidPath
 }

 if (!(Test-Path -PathType:leaf $CSVUPath))
 {
 $notValidPath = $true
 Write-Host -fore yellow “`nThe file path entered is invalid. Please check
the file path and try again.`n”
 return $notValidPath
 }

 return $notValidPath
}

Validate the path to the input CSV file, if it fails validation, exit
if (validatePath) { exit }

Read input from the CSV file, if there is a failure reading the file, exit
$Users = (Import-Csv $CSVUPath)

if (!$users)
{
 Write-Host -fore yellow “`nFailed to read the input file. It is either invalid
or improperly formatted.`n”
 exit
}

Prompt for the master password to set on the new mailbox enabled accounts
Write-Host -Fore green “`nPlease enter a temporary secure password for the new user
accounts`n”

(continued)

c15.indd 433c15.indd 433 12/17/07 4:05:20 PM12/17/07 4:05:20 PM

Part IV: Automating Administration

434

$password = (Read-Host -AsSecureString “Enter Password”)

Initialize log file
$datetime = Get-Date

$logHeader = “

Run time = $dateTime using input file $CSVUPath
***”

$logFile = “$home\My Documents\bulk-newmailbox.log”

Out-File $logFile -InputObject $logHeader -Append

Set variables used to write to the log file
$err = $null
$blankLine = “--”
$total = 0
$errorTotal = 0

Create the mailbox enabled accounts
foreach ($user in $users)
 {
 New-Mailbox -Name:$user.name -Database:$user.Database `
 -OrganizationalUnit:$user.OrganizationalUnit `
 -UserPrincipalName:$user.UserPrincipalName `
 -FirstName:$user.FirstName -LastName:$user.LastName `
 -Password:$password -ResetPasswordOnNextLogon:$true `
 -ErrorVariable err | out-null

 If ($err -ne $null)
 {
 $errorString = “[ERROR]: Processing user $($user.name) failed with the
following error:”
 Out-File $logfile -Append -Inputobject $blankLine, `
 $errorString, $err[0], $blankLine
 $errorTotal += 1
 }
 else
 {
 $outString = “[SUCCESS]: New mailbox created for $($user.name) on
database: $($user.database)”
 Out-File $logFile -Inputobject $outString -append
 }

 $total += 1

 write-progress -Activity “Processed User: $($user.name)” -Status “Progress:” `
 -PercentComplete ($total/$users.count*100)
 }

output the summary
Write-Host -Fore yellow “`nProcessing complete. $total users were processed with
$errorTotal errors. Please refer to $logfile for more details.`n”

(continued)

c15.indd 434c15.indd 434 12/17/07 4:05:20 PM12/17/07 4:05:20 PM

Chapter 15: User, Group, and Public Folder Administration

435

 Examining the Improved Script
 For analysis, this script is broken down into individual segments, each marked with a comment line to
describe what the segment does. The following paragraphs explain how each segment works and are
followed by the specific segment of code they describe.

 First, you should notice the comments at the beginning of the script. Think of this section as the script ’ s
documentation. You should always put any information you feel is important for those interested in
using your script. As a good practice you should consider placing revision notes in this section if you
make changes to a script over its lifetime. At minimum your comments should include the script name,
script usage, and an example:

bulk-newmailbox.v1.ps1

Synopsis: This script creates one or more mailbox enabled user accounts based on
input values read from a comma separated value (CSV) file. This script
has to be run by an administrator who is a member of the Exchange
Recipient Administrators group.
#
The CSV file must contain these header values on the first line:
#
Name,Database,OrganizationalUnit,UserPrincipalName,FirstName,LastName
#
This script writes the results to log file bulk-newmailbox.log in the
home directory of the current user. New entries are appended to an
existing log file.
#
Usage: bulk-newmailbox.v1.ps1 < full path to CSV file >
#
Example: bulk-newmailbox.v1.ps1 c:\users.csv

 The first segment of code is identical to that found in the simple script and uses the param keyword to
specify the input parameter value to set on variable $CSVUpath .

param([string]$CSVUpath)

 The second code segment “ turns off ” errors normally displayed at the console by setting the automatic
variable $ErrorActionPreference to the value of SilentlyContinue . This setting affects error
reporting only in the scope of the script; the way errors are displayed returns to normal after the script
completes. Any errors encountered during script execution are interpreted by the script. If the user needs
to take action, a user - friendly message is displayed. All other errors are recorded to the log file:

Turn off error reporting to the display
$ErrorActionPreference = “SilentlyContinue”

 The third code segment defines a function block called ValidatePath that is used to validate the path
to the CSV file by testing the input value and whether or not it resolves to an existing file. It is standard
practice to define functions up front in a script because they have to be stored in memory before they can
be processed later in the script.

c15.indd 435c15.indd 435 12/17/07 4:05:20 PM12/17/07 4:05:20 PM

Part IV: Automating Administration

436

 First, the $notValidPath variable is created to store the results of the tests. It is set to $false before the
tests are run and changes to $true if one of the tests fails. The value of $notValidPath is returned to
the command that calls this function, and will be used to determine if script processing is halted or
continues:

This function validates the path to the CSV input file
function ValidatePath
{
 $notValidPath = $false

 Next the value of the $CSVUpath variable is tested to see if a value was entered at the command line
when the script was run, and if so whether that value resolves to an existing file. To make these tests, if
statements are used. The syntax of an if statement is quite simple:

if (< conditional test >) { < code block > }

 Basically, an if statement works like this: If the < conditional test > evaluates true , execute the
contents of the < code block > . If the < conditional test > evaluates false , skip the < code block >
and go to the next command.

 The first if statement tests the value stored in $CSVUpath to see if it is equal to null, which would
mean the user forgot to supply an input value when the script was run. If that is so, the conditional test
evaluates to true, and the code block is executed.

 If the script block runs, the $notValidPath variable is set to $true . The Write-Host cmdlet is used to
display a text message advising the user to enter the full path to a CSV file. The fore parameter is used
to change the text color to yellow so it stands out as a warning. The text string value includes a special
character combination of the grave accent escape character and the letter n (̀ n) that causes the shell to
display the text that follows at the start of a new line. This ensures that the message is displayed on a line
by itself for maximum readability.

 The return command is used to return the value stored in $notValidPath to the command that called
the ValidatePath function. At this point all processing of the function is complete.

 if ($CSVUPath -eq “”)
 {
 $notValidPath = $true
 Write-Host -fore yellow “`nYou must enter the full path to a CSV file to
use as input to this script.`n”
 return $notValidPath
 }

 If the first conditional test evaluates to false , then at least some value was passed at the command line.
But is that value a valid path to a file? To find out, the next command is an if statement that uses
the Test-Path cmdlet to test the path stored in $CSVUpath to see if it resolves to an existing file. The
PathType parameter specifies a leaf object, which corresponds to a file type as opposed to a
 container object, which is a directory type. That prevents the user from entering only a path to a
directory and not the full path to a file.

c15.indd 436c15.indd 436 12/17/07 4:05:21 PM12/17/07 4:05:21 PM

Chapter 15: User, Group, and Public Folder Administration

437

 The result of running Test-Path is True if the file is found and False if the file is not found. Because
an if statement only executes the contents of the code block when the conditional test is True , the result
of the Test-Path command must be changed to True if the file was not found. To accomplish this, the
conditional test has been wrapped by parentheses and the NOT operator (!) is used to change the result
of the test to the opposite value; true becomes false and false becomes true.

 If the conditional test evaluates to true (the file was not found), the code block is executed. The
 $notValidPath variable is set to $true and the Write-Host cmdlet is used to display a text message
advising the user to check the file path entered and try again. The value stored in $notValidPath is
then returned to the command that called the ValidatePath function and processing of the function
is complete.

 if (!(Test-Path -PathType:leaf $CSVUPath))
 {
 $notValidPath = $true
 Write-Host -fore yellow “`nThe file path entered is invalid. Please check
the file path and try again.`n”
 return $notValidPath
 }

 The last command in the function executes only when both if statements have evaluated false . The
initial value stored in $notValidPath would not have been changed because neither if statement
executed, so the value returned to the command that called the function would be $false .

 return $notValidPath

 The next code segment uses an if statement to evaluate the result of calling the ValidatePath function.
If the result is true, which would be the case if one of the tests in ValidatePath failed, then the code
block is executed. The only command in the code block is exit , which causes Windows PowerShell to
stop processing and exit the script immediately.

 If the result of calling the ValidatePath function is false, which would be the case if both of the tests in
 ValidatePath passed, then the code block is skipped and the script continues to execute.

Validate the path to the input CSV file, if it fails validation, exit
if (validatePath) { exit }

 Now that the input file path for the CSV has been confirmed, the next code segment handles loading the
file. This code segment is very similar to that used for the same purpose in the simple version of the
script, but adds error checking for importing the contents of a CSV file.

Read input from the CSV file, if there is a failure reading the file, exit
$Users = (Import-Csv $CSVUPath)

 When running this script it is possible to enter the path of a file that is not a CSV file. When the Import-
Csv cmdlet attempts to read this file, it can report an error if it finds the file is either improperly
formatted or the file cannot be opened for one reason or another. Because the result of Import-Csv is
stored in the $users variable, it can be tested with another if statement to see if the result is true
(importing the file succeeded) or false (importing the file failed).

c15.indd 437c15.indd 437 12/17/07 4:05:21 PM12/17/07 4:05:21 PM

Part IV: Automating Administration

438

 If $users is false , NOT changes the result of the conditional test to true and the code block executes.
The Write-Host cmdlet displays a warning message telling the user the file specified is either invalid or
is not a properly formatted CSV file. After that the script exits. If $users is true , NOT changes the result
of the conditional test to false and the code block is skipped.

if (!$users)
{
 Write-Host -fore yellow “`nFailed to read the input file. It is either invalid
or improperly formatted.`n”
 exit
}

 The next code segment prompts the user for a secure password and again is very similar to the code
used for the same purpose in the simple version of the script. A better user message has been added to
inform the user about the purpose of the secure password prompt.

Prompt for the master password to set on the new mailbox enabled accounts
Write-Host -Fore green “`nPlease enter a temporary secure password for the new user
accounts`n”

$password = (Read-Host -AsSecureString “Enter Password”)

 The next code segment initializes the log file. It starts by storing the current date and time in a variable
called $datetime . This provides a date stamp that is added to the log header information each time the
script is run. The next variable, $logheader , is used to store strings that form the header section of
the log. The strings are stored in the variable formatted in the same way they appear in the script: three
separate lines of text. Where the $datetime and $CSVUpath variables are used in the second line of text,
their values are stored in the variable $logheader in those positions.

 The $logfile variable is used to store the full path to the bulk-newmailbox.log file. The default
location is the My Documents folder of the currently logged on user. The Out-File cmdlet is used to
write to the file specified by $logfile , using the strings stored in $logheader as specified by the
InputObject parameter. The log file is created if it does not already exist. The Append parameter forces
 Out-File to add to the end of an existing log file instead of overwriting it.

Initialize log file
$datetime = Get-Date

$logHeader = “

Run time = $dateTime using input file $CSVUPath
***”

$logFile = “$home\My Documents\bulk-newmailbox.log”

Out-File $logFile -InputObject $logHeader -Append

c15.indd 438c15.indd 438 12/17/07 4:05:21 PM12/17/07 4:05:21 PM

Chapter 15: User, Group, and Public Folder Administration

439

 This code segment sets several variables that are used during mailbox creation to track processing and
write information to the log file. The $err variable is used by the New-Mailbox cmdlet to store any
errors it encounters. The $blankLine variable is used to store a string value that is simply a series of
dashes. This string is used later in the script when error messages are written to the log file, to make
them more readable. The lines of dashes are used above and below the error message to make it easier to
distinguish an individual instance when multiple instances appear in sequence in the log.

 The $total variable is used to keep a running total of the number of users processed. The $errorTotal
variable is used to keep a running total of the number of errors generated during the user creation
process.

Set variables used to write to the log file
$err = $null
$blankLine = “--”
$total = 0
$errorTotal = 0

 The next code segment handles the creation of mailbox - enabled user accounts using New-Mailbox in a
 foreach loop. This is similar to that used for the same purpose in the first version of the script, but
incorporates error control and logging features as well as the addition of some important parameters.

 The FirstName and LastName parameters are used to specify the first and last name attributes of the
new user accounts. The ErrorVariable parameter is used to specify a variable to which all errors
encountered by New-Mailbox are to be written. The $err variable is specified, but note that the $
character is not used when naming the variable.

 The output from New-Mailbox normally goes to the console screen for display. Because logging is being
implemented, there is no need to see the default output. Therefore it is directed to the Out-Null cmdlet
via pipeline. All default output from New-Mailbox is basically “ thrown away. ”

Create the mailbox enabled accounts
foreach ($user in $users)
 {
 New-Mailbox -Name:$user.name -Database:$user.Database `
 -OrganizationalUnit:$user.OrganizationalUnit `
 -UserPrincipalName:$user.UserPrincipalName `
 -FirstName:$user.FirstName -LastName:$user.LastName `
 -Password:$password -ResetPasswordOnNextLogon:$true `
 -ErrorVariable err | out-null

 After each execution of New-Mailbox , an if statement is used to test if $err is holding a value not equal
to null. If New-Mailbox encountered no errors during execution, the value of $err should still be set to
null. If there was an error during execution, $err holds an error message corresponding to the error that
was encountered. If an error was encountered the conditional test evaluates as true and the code block is
executed.

 The $errorString variable is used to store a text message string that includes the name of the user
($user.name) that was being processed when the error occurred. The string includes the keyword
 [ERROR] to make it easier to search the log file when looking for errors. Note that this is an arbitrary
word and not a specific Windows PowerShell keyword.

c15.indd 439c15.indd 439 12/17/07 4:05:22 PM12/17/07 4:05:22 PM

Part IV: Automating Administration

440

 The Out-File cmdlet is used to append the bulk-newmailbox.log file with the contents of a
combination of variables that comprise the error message to be added to the log. These variables are
specified by the InputObject parameter followed by the variables ’ names, separated by commas.

 The $blankline variable defined earlier in the script adds a line of dashes to identify the beginning of
an error message in the log. The $errorString variable adds the error string identifying the user. The
 $err[0] variable adds the specific error message generated by New-Mailbox . Note that $err is an
array, therefore to extract the error message it contains you must specify the first element in the array by
enclosing the index number (the first element is always 0) in square brackets. Finally, another
 $blankline variable is used to add a line of dashes to mark the end of the error message.

 After the error message is output to the log file, the $errorTotal variable is incremented by 1 . This is
accomplished using the addition assignment operator (+=), which instructs Windows PowerShell to
assign a new value that is the current value plus 1.

 If ($err -ne $null)
 {
 $errorString = “[ERROR]: Processing user $($user.name) failed with the
following error:”
 Out-File $logfile -Append -Inputobject $blankLine, `
 $errorString, $err[0], $blankLine
 $errorTotal += 1
 }

 The if statement is followed by an else statement. An else statement is used as a way of executing an
alternate command when the conditional test of an if statement evaluates false. The else statement has
no conditional test of its own and instead relies on the result of the preceding if statement. Therefore the
 else statement code block only executes when New-Mailbox successfully creates a mailbox - enabled
user account.

 The $outstring variable is used to store a text message string that includes the name of the user that
was successfully processed by New-Mailbox . This variable is used by Out-File to append the message
to the bulk-newmailbox.log file.

 else
 {
 $outString = “[SUCCESS]: New mailbox created for $($user.name) on
database: $($user.database)”
 Out-File $logFile -Inputobject $outString -append
 }

 To track the total number of users processed, the $total variable is incremented by 1 each time the
 foreach loop executes. This value will be used later in the summary display to report the total number
of users processed.

 $total += 1

 The last command in the foreach loop is the Write-Progress cmdlet, which is used to generate a
progress bar display on the console screen as the foreach loop executes. The progress bar is made up of
three visible elements: the activity label, the status label, and the progress indicator.

c15.indd 440c15.indd 440 12/17/07 4:05:22 PM12/17/07 4:05:22 PM

Chapter 15: User, Group, and Public Folder Administration

441

 The activity label is specified by the Activity parameter and is set to display “Processed User:
 < current user > ” . The current user value changes dynamically as users are processed. The status label is
specified by the -Status parameter and is set to “Progress:” . This value is static and does not change.

 The progress indicator is simply a series of characters (lowercase o) that increase in number left to right
to indicate the percentage of users that have been processed, as shown in this example that includes all
three elements as they appear at the top of the console screen:

Processed User: John Doe
 Progress:
 [oo]

 The PercentageComplete parameter is used to specify an equation that calculates the percentage of
users that have been processed through the current iteration of the foreach loop. In this equation the
current total of users processed ($total) is divided by the total number of users to be processed overall
($users.count). That result is then multiplied by 100 to produce a percentage.

 For example, if 4 users out of 10 have been processed, the percentage processed at that point would be
40% of the total (4/10 * 100). The resulting progress indicator display would then show approximately 28
 “ o ” characters out of 70 total to represent 40%.

 write-progress -Activity “Processed User: $($user.name)” -Status “Progress:” `
 -PercentComplete ($total/$users.count*100)
 }

 Once the foreach loop has finished processing all users, the last code segment of the script uses Write-
Host to display a final summary message to the console screen. This message includes the total number
of users processed ($total), the total number of errors encountered during processing ($errorTotal),
and the path to the bulk-newmailbox.log file ($logfile).

output the summary
Write-Host -Fore yellow “`nProcessing complete. $total users were processed with
$errorTotal errors. Please refer to $logfile for more details.`n”

 Running the Improved Script
 The improved script has better error handling than the simple script. It does a better job of providing
error feedback to the user and suggests corrective action to take when needed. The user receives current
status information via the progress indicator as the script executes. All actions are recorded in a log file
for examination after the script completes.

 The error handling incorporated into the improved script first becomes obvious when attempting to
run the script with invalid input information. The following examples demonstrate what happens when
input data fails preliminary testing before any main script processing is attempted.

 When no CSV file is specified as input, this error message is generated:

[PS] C:\ > bulk-newmailbox.v1.ps1

You must enter the full path to a CSV file to use as input to this script.

c15.indd 441c15.indd 441 12/17/07 4:05:23 PM12/17/07 4:05:23 PM

Part IV: Automating Administration

442

 When an invalid file path is specified (in this example bogus.csv does not exist) this error message
is generated:

[PS] C:\ > bulk-newmailbox.ps1 c:\bogus.csv

The file path entered is invalid. Please check the file path and try again.

 When a valid path is specified, but the file is either not a CSV file or is not properly formatted (in this
example invalid.csv is a plain text file) this error message is generated:

[PS] C:\ > bulk-newmailbox.ps1 c:\invalid.csv

Failed to read the input file. It is either invalid or improperly formatted.

 The user is only prompted for a secure master password after a valid input file is specified and all the
preliminary checks complete without failure. As the user types in the password, the keystrokes are
echoed to the screen as asterisks. Once the user presses Enter, the script continues to execute.

 Note that the master secure password must satisfy the password length and complexity requirements for
the domain where the users will be created. If not, all accounts fail creation and the resulting errors
generated are recorded in the log file.

[PS] C:\ > bulk-newmailbox.ps1 c:\users.csv

Please enter a temporary secure password for the new user accounts

Enter Password: *********

Processing complete. 8 users were processed with 2 errors. Please refer to C:\
Documents and Settings\Administrator\My Documents\bulk-newmailbox.log for more
details.

 The progress indicator appears at the top of the console screen and remains in place while the accounts
are being created. As the progress indicator updates, it displays the name of the last user that was
processed. Note that even if user creation fails, the name still appears in the progress indicator.

 Once the last user is processed, the progress indicator disappears and the summary message is
displayed. The summary message includes a total count of all users processed and the number of errors
encountered. The full path for the bulk-newmailbox.log file is given so the user knows where to find
the log file.

c15.indd 442c15.indd 442 12/17/07 4:05:23 PM12/17/07 4:05:23 PM

Chapter 15: User, Group, and Public Folder Administration

443

 The following example shows the log file generated from the instance that generated the screen output
in the last example. The log file header includes the date and time the script was run and the file used as
input. Error messages are clearly marked so they can be quickly distinguished from success messages.

Run time = 07/07/2007 09:23:07 using input file users.csv

[SUCCESS]: New mailbox created for User One on database: MB001\First Storage Group\
Mailbox Database
--
[ERROR]: Processing user User Two failed with the following error:
Organizational unit “exchangeexchange.local/Legal” was not found. Please make
sure you have typed it correctly.
--
[SUCCESS]: New mailbox created for User Three on database: MB001\First Storage
Group\Mailbox Database
[SUCCESS]: New mailbox created for User Four on database: MB001\First Storage
Group\Mailbox Database
[SUCCESS]: New mailbox created for User Five on database: MB001\First Storage
Group\Mailbox Database
--
[ERROR]: Processing user User Six failed with the following error:
Database “MB001\Second Storage Group\Mailbox Database” was not found. Please
make sure you have typed it correctly.
--
[SUCCESS]: New mailbox created for User Seven on database: MB001\First Storage
Group\Mailbox Database
[SUCCESS]: New mailbox created for User Eight on database: MB001\First Storage
Group\Mailbox Database

 Adding Group Assignments for the New Users
 The improved script creates mailbox - enabled user accounts that are ready to use without any additional
actions. Administrative tasks that follow the creation of a new mailbox - enabled user account typically
include adding the account to one or more Distribution Groups. With a few lines of additional code this
functionality can be incorporated into the bulk-newmailbox.v1.ps1 script.

 Active Directory user accounts include several named attributes such as City, Title, Department, Office,
and Manager, to name a few. User attributes offer a convenient method for determining Distribution
Group membership. For example, a user ’ s Department attribute can be used to determine membership
in a Distribution Group for that department.

 To demonstrate this concept, the script bulk-newmailbox.v2.ps1 extends the first version to add
automatic Distribution Group membership based on the Department and Office attributes. These
attribute values must be included in the CSV file used as input to the script.

 The additional code that adds this functionality is limited to the foreach loop that creates the mailbox -
 enabled accounts, therefore that is the only section of code from bulk-newmailbox.v2.ps1 that needs
to be examined.

c15.indd 443c15.indd 443 12/17/07 4:05:23 PM12/17/07 4:05:23 PM

Part IV: Automating Administration

444

Create the mailbox enabled accounts
foreach ($user in $users)
 {
 New-Mailbox -Name:$user.name -Database:$user.Database `
 -OrganizationalUnit:$user.OrganizationalUnit `
 -UserPrincipalName:$user.UserPrincipalName `
 -FirstName:$user.FirstName -LastName:$user.LastName `
 -Password:$password -ResetPasswordOnNextLogon:$true `
 -ErrorVariable err | Out-Null

 If ($err -ne $null)
 {
 $errorString = “[ERROR]: Processing user $($user.name) failed with the
following error:”
 Out-File $logfile -Append -Inputobject $blankline, `
 $errorString, $err[0], $blankline
 $errorTotal += 1
 }
 else
 {
 $errorString = “[ERROR]: Creation of mailbox enabled account for user
$($user.name) succeeded, but “

 Set-User -Identity:$user.name -Department:$user.department `
 -Office:$user.office -ErrorVariable err

 If ($err -ne $null)
 {
 $errorString += “property assignment failed with error:”
 Out-File $logFile -Append -Inputobject $blankLine, $errorString, `
 $err[0], $blankLine
 $errorTotal += 1
 }
 else
 {
 $noErrors = $true

 if ($dgdept = (Get-DistributionGroup | where {$_.name -like `
 “*$($user.department)*”}))
 {
 Add-DistributionGroupMember -Identity:$dgdept `
 -Member:$user.name -ErrorVariable err

 If ($err -ne $null)
 {
 $thiserror = $errorString + “addition to Distribution Group
$($dgdept.name) failed with error:”
 out-file $logfile -append -inputobject $blankline, `
 $thiserror, $err[0], $blankline
 $noErrors = $false
 $errorTotal += 1
 }
 }

c15.indd 444c15.indd 444 12/17/07 4:05:23 PM12/17/07 4:05:23 PM

Chapter 15: User, Group, and Public Folder Administration

445

 else
 {
 $thiserror = $errorString + “Distribution Group based on
Department `’$($user.department)`’ could not be found”
 out-file $logfile -append -inputobject $blankline, `
 $thiserror, $blankline
 $noErrors = $false
 $errorTotal += 1
 }

 if ($dgoff = (Get-DistributionGroup | where {$_.name -like `
 “*$($user.office)*”}))
 {
 Add-DistributionGroupMember -Identity:$dgoff `
 -Member:$user.name -ErrorVariable err

 If ($err -ne $null)
 {
 $thiserror = $errorString + “addition to Distribution Group
$($dgoff.name) failed with error:”
 out-file $logfile -append -inputobject $blankline, `
 $thiserror, $err[0], $blankline
 $noErrors = $false
 $errorTotal += 1
 }
 }
 else
 {
 $thiserror = $errorString + “Distribution group based on Office
`’$($user.office)`’ could not be found”
 out-file $logfile -append -inputobject $blankline, `
 $thiserror, $blankline
 $noErrors = $false
 $errorTotal += 1
 }

 if ($noErrors)
 {
 $outstring = “[SUCCESS]: Creation of mailbox enabled account
for user $($user.name) succeeded, with mailbox on database: $($user.database)”
 out-file $logfile -inputobject $outstring -append
 }
 }
 }

 $total = $total + 1

 write-progress -activity “Processed User: $($user.name)” -status “Progress:” `
 -percentcomplete ($total/$users.count*100)
 }

c15.indd 445c15.indd 445 12/17/07 4:05:24 PM12/17/07 4:05:24 PM

Part IV: Automating Administration

446

 Examining the bulk - newmailbox.v2.ps1 Script
 The first few lines of this foreach block are identical to those used in v1 of the script. The New-Mailbox
cmdlet creates each mailbox - enabled user account, and an if statement is used to test if the account was
successfully created. It is after this point that the new lines of code are introduced.

 In short, the new code starts by setting the Department and Office attribute values on the new user
account. If there is a failure when setting the attributes, an error message is written to the log and
processing for that user is complete, else processing continues. If there is a Distribution Group with a
name that matches the Department attribute value, the current user is added to that group, else an error
message is written to the log and processing continues.

 This operation is repeated for a Distribution Group with a name that matches the Office attribute value.
If there is an error adding the user to either group, an error message is written to the log accordingly. If
the user is successfully added to both Distribution Groups, a success message is written to the log and
processing for that user is complete.

 The following paragraphs examine in detail the code segments used to accomplish this functionality
followed by the specific segment of code they describe.

 All of the new code is encapsulated in an else statement that executes only if the New-Mailbox
operation is successful. The $errorString variable is used to store a string value that will be used as
the basis for all error messages written to the log file. When an error is generated, additional text will be
concatenated to the end of $errorString to complete the error message.

 else
 {
 $errorString = “[ERROR]: Creation of mailbox enabled account for user
$($user.name) succeeded, but “

 Because the New-Mailbox cmdlet does not provide for setting non - mail - related attributes when creating
a user account, the Set-User cmdlet is used in a separate command to set the Department and Office
properties. The values used are taken from the data read from the same CSV file that supplied the values
used to create the account with New-Mailbox .

 Set-User -Identity:$user.name -Department:$user.department `
 -Office:$user.Office -ErrorVariable err

 The if block following Set-User checks to see if there were any errors when setting the attribute
values. Neither attribute is validated when they are set, so it is not likely that setting these values would
cause an error. However, should there be an error generated by Set-User , there should be no attempt to
add the user account to a Distribution Group because the attributes that determine group membership
are compromised.

 The error is captured in the $err variable and is used along with the text stored in the $errorString
variable plus the text string shown to construct the error message written to the log file. At this point all
processing for the current user is complete and control passes back to the foreach loop to process the
next user.

c15.indd 446c15.indd 446 12/17/07 4:05:24 PM12/17/07 4:05:24 PM

Chapter 15: User, Group, and Public Folder Administration

447

 If ($err -ne $null)
 {
 $errorString += “property assignment failed with error:”
 Out-File $logFile -Append -Inputobject $blankLine, $errorString, `
 $err[0], $blankLine
 $errorTotal += 1
 }

 If user attributes are successfully set, the if statement is skipped and the else block that follows it
executes instead. It is in this else block that the user attributes are evaluated and the account is added to
the corresponding Distribution Groups. There are two separate Distribution Group add operations in
this block. Each operation has a chance to fail so there is a potential to log two separate error messages.
The $noErrors variable is used to keep track of these individual failures. An overall success message is
written to the log only when $noErrors is still true when all processing for the current user is complete.

 else
 {
 $noErrors = $true

 The next if statement is used to add the user to a Distribution Group based on Department. The
condition block for this if statement serves two purposes. First, the $dgdept variable is set with the
object returned by Get-DistributionGroup where the name is similar to the user ’ s Department
attribute value. This also results in a true condition if a Distribution Group is found, and a false
condition if not found. Therefore the if statement only executes when a Distribution Group is found.

 if ($dgdept = (Get-DistributionGroup | where {$_.name -like `
 “*$($user.department)*”}))
 {

 The Add-DistributionGroupMember cmdlet is used to add the user specified by Member to the
Distribution Group stored in the variable $dgdept .

 Add-DistributionGroupMember -Identity:$dgdept `
 -Member:$user.name -ErrorVariable err

 The if statement that follows the Add-DistributionGroupMember command checks to see if the
operation was successful by testing if $err is not equal to null. If true, the error captured in $err is used
along with the text stored in the $errorString variable plus the text string shown to construct the error
message written to the log file. Also $noErrors is set to $false and $errorTotal is incremented by 1.

 If ($err -ne $null)
 {
 $thiserror = $errorString + “addition to Distribution Group
$($dgdept.name) failed with error:”
 out-file $logfile -append -inputobject $blankline, `
 $thiserror, $err[0], $blankline
 $noErrors = $false
 $errorTotal += 1
 }

c15.indd 447c15.indd 447 12/17/07 4:05:24 PM12/17/07 4:05:24 PM

Part IV: Automating Administration

448

 If a Distribution Group is not found, the if statement is skipped and the else statement that follows it
executes instead. The $thisError variable is used to store the contents of $errorString plus the text
string shown to form the error message written to the log file. Also $noErrors is set to $false and
 $errorTotal is incremented by 1.

 else
 {
 $thiserror = $errorString + “Distribution Group based on
Department `’$($user.department)`’ could not be found”
 out-file $logfile -append -inputobject $blankline, `
 $thiserror, $blankline
 $noErrors = $false
 $errorTotal += 1
 }

 At this point all operations related to adding the current user to a Distribution Group based on the
Department attribute value are complete.

 The next segment of code adds the user to a Distribution Group based on the Office attribute value and
is identical in form to the code described in the last few paragraphs so an in - depth examination is not
required. Instead we can skip ahead to the last segment of new code.

 A final if statement is used to check the state of the variable $noErrors . If it is still $true , then there
have been no errors and the success message for the current user is written to the log file. If $noErrors
is $false , then an error message for the current user has already been written to the log file and the if
statement is skipped. At this point all processing for the current user is complete.

 if ($noErrors)
 {
 $outstring = “[SUCCESS]: Creation of mailbox enabled account
for user $($user.name) succeeded, with mailbox on database: $($user.database)”
 out-file $logfile -inputobject $outstring -append
 }

 The final lines of code left in the foreach loop are identical to that used in the first script version. The
 $total variable is incremented by 1, and the progress indicator is updated to show the user that was
processed and the percent of users processed overall.

 Running the bulk - newmailbox.v2.ps1 Script
 The requirements for running bulk-newmailbox.v2.ps1 are identical to those for running
 bulk-newmailbox.v1.ps1 , except for the CSV input file, which must also include the values for the
Department and Office attributes.

c15.indd 448c15.indd 448 12/17/07 4:05:25 PM12/17/07 4:05:25 PM

Chapter 15: User, Group, and Public Folder Administration

449

 To demonstrate the errors that might be logged when creating new users with bulk-newmailbox.v2
.ps1 , a CSV file with values that were sure to cause failures was used to produce the following log file:

Run time = 07/18/2007 13:01:27 using input file users2.csv

[SUCCESS]: Creation of mailbox enabled account for user User One succeeded, with
mailbox on database: MB001\First Storage Group\Mailbox Database
--
[ERROR]: Creation of mailbox enabled account for user User Two succeeded, but
addition to Distribution Group Manufacturing failed with error:
Add-DistributionGroupMember : Active Directory operation failed on MB001.exchan
geexchange.local. This error is not retriable. Additional information: Insuffic
ient access rights to perform the operation.
Active directory response: 00002098: SecErr: DSID-03150A45, problem 4003 (INSUF
F_ACCESS_RIGHTS), data 0

At C:\Program Files\Microsoft\Exchange Server\Scripts\bulk-newmailbox.v2a.ps1:1
29 char:48
+ Add-DistributionGroupMember < < < < -Identity:$dgdept `
--
--
[ERROR]: Creation of mailbox enabled account for user User Two succeeded, but
Distribution group based on Office ‘ Boston ’ could not be found
--
[SUCCESS]: Creation of mailbox enabled account for user User Three succeeded, with
mailbox on database: MB001\First Storage Group\Mailbox Database
[SUCCESS]: Creation of mailbox enabled account for user User Four succeeded, with
mailbox on database: MB001\First Storage Group\Mailbox Database
[SUCCESS]: Creation of mailbox enabled account for user User Five succeeded, with
mailbox on database: MB001\First Storage Group\Mailbox Database
--
[ERROR]: Creation of mailbox enabled account for user User Six succeeded, but
Distribution Group based on Department ‘ Legal ’ could not be found
--
[SUCCESS]: Creation of mailbox enabled account for user User Seven succeeded, with
mailbox on database: MB001\First Storage Group\Mailbox Database
[SUCCESS]: Creation of mailbox enabled account for user User Eight succeeded, with
mailbox on database: MB001\First Storage Group\Mailbox Database

 As you can see adding User Two to Distribution Group “ Manufacturing ” failed with a permission error,
and adding User Two to Distribution Group “ Boston ” failed because no such Distribution Group could
be found. The script is able to handle two separate errors for the same user and record both in the log
successfully.

 Load Balancing User Creation Across Mailbox Servers
 The previous two example scripts used hard values read from a CSV file to determine the mailbox
database where the mailboxes would be created. Administrators may find working out these database
assignment values a tedious and time - consuming task. Because scripting is all about automating tasks,
wouldn ’ t it be nice to let the script work out where the mailboxes will be created?

c15.indd 449c15.indd 449 12/17/07 4:05:25 PM12/17/07 4:05:25 PM

Part IV: Automating Administration

450

 There are several schemes administrators may choose to use when balancing users across mailbox
databases. One of the simplest methods is to use the first initial of the user ’ s last name to categorize the
user into a group that covers a set range of initials, for example the last name “ Adams ” would
correspond to the group “ A ” through “ F ” . The group would then correspond to a mailbox database
where that group ’ s mailboxes are to be created.

 The administrator could then disperse all new mailboxes based on a pattern that guarantees an even
distribution, as long as the groups of initials correspond to the even distribution of users across the
organization. For the example script bulk-newmailbox.v3.ps1 this section explores, the following
ranges of initials are being used: “ A ” through “ F ” , “ G ” through “ K ” , “ L ” through “ P ” , “ Q ” through “ T ” ,
and “ U ” through “ Z ” .

 Examining the bulk - newmailbox.v3.ps1 Script
 The code that enables this functionality is spread across what is an updated version of the
 bulk-newmailbox.v2.ps1 script, so the following paragraphs describe the code changes where
they appear followed by the code they describe. Note that much of the code is simply a modification
of the original code, whereas some of the code is completely new.

 The first line of code adds a second parameter input value $CSVDBPath that is used to store the values
from a CSV file containing a list of databases where the new mailboxes are to be created. This makes
the script more dynamic in that the database names are not hardcoded and can be changed each time the
script is run.

param([string]$CSVUPath, [string]$CSVDBPath)

 The next segment of code is a reworked version of the ValidatePath function. Because two CSV files
are being read as input, the function is updated to validate both files. To accomplish this, an -or
comparison operator is used in each if statement conditional test to check both input parameters. When
using an -or operator in a conditional test, if either test result is true, the entire conditional test is true.
Note that the display messages have been changed from those used in earlier versions of the script to
handle the ambiguity of multiple input files.

function ValidatePath
{
 $validPath = $true

 if (($CSVUPath -eq “”) -or ($CSVDBPath -eq “”))
 {
 $validPath = $false
 Write-Host -fore yellow “`nYou must enter the full path to the CSV files
used as input to this script.`n”
 return $validPath
 }

 if (!(test-path -pathType:leaf $CSVUPath) -or
 !(test-path -pathType:leaf $CSVDBPath))

c15.indd 450c15.indd 450 12/17/07 4:05:26 PM12/17/07 4:05:26 PM

Chapter 15: User, Group, and Public Folder Administration

451

 {
 $validPath = $false
 Write-Host -fore yellow “`nA file path entered is invalid. Please check
file paths and try again.`n”
 return $validPath
 }

 return $validPath
}

 A new function called GetDatabase is used to determine the database where the current user ’ s mailbox
is created. The function starts with a parameter definition to assign the user ’ s last name to the variable
 $lastname . Next, the string variable $firstchar is assigned the value of the first character of the string
stored in the variable $lastname . This is accomplished using the built - in ToCharArray method
available for manipulating string values. Because the method converts the string value to an array, the
first element in the array (the first element is always zero) that holds the first character is de - referenced
using square brackets ([0]).

 Now that the first character is stored in $firstchar , the value can be used to test a series of character
arrays to determine to which group the user belongs. The character arrays are created later in the script,
but must be referenced in the function when it is defined. To test the arrays, an if and a series of elseif
statements are used to test whether the given character array contains the character stored in
 $firstchar .

 Before the tests begin, the variable $targetDB is used to store a null value that can be returned to the
command that called the function in case all the tests fail. The first test is made by an if statement that
checks whether the character array variable $a2f contains the value stored in $firstchar . If the result
of this test is true, then $targetDB is set to the databasename property of the first mailbox database
object stored in array variable $mailboxdatabases . The array $mailboxdatabases is set later in the
script by reading the CSV file that contains the list of mailbox databases.

 If the first test in the if statement is false, then the next test is made using an elseif statement. An
 elseif statement is used as an alternative statement that is processed when an if statement evaluates
false. A series of elseif statements can be used for different tests, one after the other following an if
statement. The first elseif statement that evaluates true is processed, else control passes to the next
 elseif statement. It is in this way that the remaining character arrays are tested for the value stored in
 $firstchar .

 The first elseif statement tests the character array variable $g2k , which if true sets $targetDB to the
 databasename of the second mailbox database stored in $mailboxdatabases . The second elseif
statement tests the character array variable $l2p , the third elseif statement tests $q2t , and the last
 elseif statement tests $u2z . If all the tests evaluate false, then the else statement at the end of the line
returns the current value stored in $targetDB , which was set to null before entering the if-elseif
statements.

 When the if statement or one of the elseif statements evaluates true, the value of $targetDB is set
accordingly and the statement is exited. Control passes to the first command past the else statement,
which returns the value of $targetDB to the command that called the function.

c15.indd 451c15.indd 451 12/17/07 4:05:26 PM12/17/07 4:05:26 PM

Part IV: Automating Administration

452

This function determines the target database
function GetDatabase
{
 param([string]$lastname)

 # Get the first character of the last name value
 [string]$firstchar = $lastname.ToCharArray()[0]

 # Test the first character against the array values to find the target database
 $targetDB = $null

 if ($a2f -contains $firstchar)
 {
 $targetDB = $mailboxdatabases[0].databasename
 }
 elseif ($g2k -contains $firstchar)
 {
 $targetDB = $mailboxdatabases[1].databasename
 }
 elseif ($l2p -contains $firstchar)
 {
 $targetDB = $mailboxdatabases[2].databasename
 }
 elseif ($q2t -contains $firstchar)
 {
 $targetDB = $mailboxdatabases[3].databasename
 }
 elseif ($u2z -contains $firstchar)
 {
 $targetDB = $mailboxdatabases[4].databasename
 }
 else
 {
 return $targetdb
 }

 return $targetdb
}

 The next section of new code reads the CSV file stored in the input parameter $CSVDBPath using
 Import-CSV and stores the objects in the variable $mailboxdatabases . The if statement that
immediately follows checks if $mailboxdatabases was successfully set. If not, an error message is
passed to the display and the script is exited.

Read from the database CSV file, if there is a failure reading the file, exit
$mailboxdatabases = (Import-Csv $CSVDBPath)

if (!$mailboxdatabases)
{
 Write-Host -fore yellow “`nFailed to read the database input file. It is either
invalid or improperly formatted.`n”
 exit
}

c15.indd 452c15.indd 452 12/17/07 4:05:26 PM12/17/07 4:05:26 PM

Chapter 15: User, Group, and Public Folder Administration

453

 The $logheader variable is updated to include the name of the CSV file used as input for the mailbox
database list.

$logheader = “

Run time = $datetime using input files $CSVUPath & $CSVDBPath
***”

 Finally, the character variable arrays used to determine the group to which the current user should be
matched are defined. The variables are set as arrays by using the @ character before a set of parentheses
holding each individual string character value separated by commas.

Create arrays to collate user based on first character of last name
$a2f = @(“a”, “b”, “c”, “d”, “e”, “f”)
$g2k = @(“g”, “h”, “i”, “j”, “k”)
$l2p = @(“l”, “m”, “n”, “o”, “p”)
$q2t = @(“q”, “r”, “s”, “t”)
$u2z = @(“u”, “v”, “w”, “x”, “y”, “z”)

 The New-Mailbox command in the foreach loop has to be modified as well because the mailbox
database values are not taken from the user CSV file. To set the mailbox database value stored in the
variable $database , the getdatabase function is called using the current user ’ s last name as an input
value. Once the value is set, it is used to specify the Database parameter value for New-Mailbox .

Create the mailbox enabled accounts
foreach ($user in $users)
 {
 $database = (getdatabase $user.LastName)

 New-Mailbox -Name:$user.name -Database:$database `
 -OrganizationalUnit:$user.OrganizationalUnit `
 -UserPrincipalName:$user.UserPrincipalName `
 -FirstName:$user.FirstName -LastName:$user.LastName `
 -Password:$password -ResetPasswordOnNextLogon:$true `
 -ErrorVariable err | Out-Null

 Finally, the success output message written to the log file has been updated to use the value stored in
 $database to report where the mailbox was created.

 elseif ($errorlocal -eq 0)
 {
 $outstring = “[SUCCESS]: Creation of mailbox enabled account
for user $($user.name) succeeded, with mailbox on database: $database”
 out-file $logfile -inputobject $outstring -append
 }

c15.indd 453c15.indd 453 12/17/07 4:05:27 PM12/17/07 4:05:27 PM

Part IV: Automating Administration

454

 Running the bulk - newmailbox.v3.ps1 Script
 Running bulk-newmailbox.v3.ps1 requires the input of two CSV files, the first for user information
and the second for mailbox database information. The mailbox database CSV file needs only one name
in the header to represent the database name property, and the values should be presented in < server
name > \ < storage group name > \ < database name > format. For example, the following would be
sufficient content to use as input:

DatabaseName
MB001\Storage Group a-f\a-f Mailbox Database
MB001\Storage Group g-k\g-k Mailbox Database
MB001\Storage Group l-p\l-p Mailbox Database
MB001\Storage Group q-z\q-z Mailbox Database

 As for the user CSV input file, there is no need to include a value for Database because this is worked
out by the script.

 All other features of bulk-newmailbox.v3.ps1 remain the same as those found in previous versions of
the mailbox creation script. The messages and progress indicator displayed during processing and the
success and error messages written to the log file are the same.

 Creating a Public Folder for the New Users
 Exchange public folders offer a convenient method for storing and sharing information among mailbox -
 enabled users. Most organizations take public folder administration out of the hands of users and rest
the responsibility on the shoulders of the Exchange administrator. Public folder creation and
administration are tasks suitable for automation via scripting.

 This section explores a script that is used to create a public folder for a mailbox - enabled user, and then
set permissions suitable for that user to maintain their own content without allowing them to delete the
folder or create sub - folders. The folder when created is named using the full name of the user. The script
also confirms if the user is actually mailbox - enabled, and if the user actually needs a folder created in
case one already exists.

 The script uses these cmdlets:

❑ Write-Host

❑ Get-PublicFolderDatabase

❑ Get-PublicFolder

❑ Get-Mailbox

❑ Get-MailboxDatabase

❑ New-PublicFolder

❑ Add-PublicFolderClientPermission

c15.indd 454c15.indd 454 12/17/07 4:05:27 PM12/17/07 4:05:27 PM

Chapter 15: User, Group, and Public Folder Administration

455

 The following lists the contents of script file newuser-publicfolder.ps1 :

newuser-publicfolder.ps1

Synopsis: This script creates a Public Folder based on a mailbox enabled user
account used as an input value to the script. This script has to
be run by an administrator who is a member of the Exchange Recipient
Administrators group.
#
This script checks to see if the user is mailbox enabled and if a
Public Folder already exists for the user. If not, a folder is
created named for the user in the default Public Folder database
specified by the user ’ s mailbox database. The folder client
permissions are set to allow the user full control over the folder
contents, and the user running the script is set as the folder owner.
#
Usage: newuser-publicfolder.ps1 < mailbox enabled user >
#
Example: newuser-publicfolder.ps1 user1@exchangeexchange.com

param([string]$user)

Turn off error reporting to the display
$ErrorActionPreference = “SilentlyContinue”

#This function validates the user specified
function validateUser
{
 $notValidUser = $false

 if ($user -eq “”)
 {
 $notValidUser = $true
 Write-Host -fore yellow “`nYou must enter a mailbox enabled user account as
input to this script.`n”
 return $notValidUser
 }

 if (!($usermb))
 {
 $notValidUser = $true
 Write-Host -fore yellow “`nThe account specified is not mailbox enabled or
could not be found in Active Directory.`n”
 return $notValidUser
 }

 if ($usermb.RecipientTypeDetails -ne “UserMailbox”)
 {
 $notValidUser = $true
 Write-Host -fore yellow “`nThe mailbox enabled account specified is not a
user mailbox.`n”
 return $notValidUser
 }

(continued)

c15.indd 455c15.indd 455 12/17/07 4:05:27 PM12/17/07 4:05:27 PM

Part IV: Automating Administration

456

 return $notValidUser
}

This function checks the public folder database availability
function validatePFStore
{
 $databaseNotUp = $false

 if (!(get-publicfolderdatabase -identity:$PFDatabase -status).mounted)
 {
 $databaseNotUp = $true
 Write-Host -fore yellow “`nPublic Folder Database
 ‘ $($server.name)\$($PFDatabase.name) ’ is not available. Please check it ’ s
status.`n”
 return $databaseNotUp
 }

 return $databaseNotUp
}

#This function validates the need to create a folder for the user specified
function validatefolder
{
 $hasFolder = $false

 if (get-publicfolder -identity:”\corporate\$($usermb.name)” -server:$server)
 {
 $hasFolder = $true
 Write-Host -fore yellow “`nA Public Folder for this user already exists.`n”
 return $hasFolder
 }

 return $hasFolder
}

Get the mailbox information for the specified user
$userMB = Get-Mailbox -Identity:$user

Validate the user is mailbox enabled and the mailbox is a user mailbox
if (validateUser) { exit }

Figure out where to create the folder
$PFDatabase = (Get-MailboxDatabase -Identity:$userMB.Database).PublicFolderDatabase
$server = (Get-PublicFolderDatabase -Identity:$PFDatabase).server

Check if the public folder database is available
if (validatePFStore) { exit }

Validate the user needs a folder created
if (validateFolder) { exit }

(continued)

c15.indd 456c15.indd 456 12/17/07 4:05:28 PM12/17/07 4:05:28 PM

Chapter 15: User, Group, and Public Folder Administration

457

Create the folder, exit if folder creation fails for any reason
$newFolder = New-PublicFolder -Name:$usermb.name -Path:”\corporate” `
-Server:$server -ErrorVariable err

If ($err -ne $null) { $err; exit }

$newFolder

Set permissions on the folder
Add-PublicFolderClientPermission -Identity:$newFolder `
-User:$usermb.alias -AccessRights:Editor -Server:$server

 Examining the newuser - publicfolder.ps1 Script
 After the usual lines of comment, the script starts by defining the input parameter variable $user to
hold the name of the mailbox - enabled user account entered when the script is run.

param([string]$user)

 As was the case in previous scripts described in this chapter, the automatic variable
 $ErrorActionPreference is set to SilentlyContinue so default error messages are not displayed.
Instead, the script generates its own error messages as appropriate.

Turn off error reporting to the display
$ErrorActionPreference = “SilentlyContinue”

 The first function definition called validateUser is used to check the user specified in $user to see if it
is indeed a mailbox - enabled user account. The script assumes the administrator only wants to create
public folders for users and not contacts or mail - enabled users. To keep track of whether the user is
valid, the $notValidUser variable is set to $false . This is the value that is returned to the command
that called validateUser if all tests pass and the user is valid.

#This function validates the user specified
function validateUser
{
 $notValidUser = $false

 The next code segment uses an if statement to test if a value was passed at the command line when the
script was run. If $user is null, $notValid is set to $true and an error message is displayed on the
screen to instruct the administrator to supply a valid user account. The value of $notValidUser is
returned to the command that called validateUser and all processing for the function is complete.

 if ($user -eq “”)
 {
 $notValidUser = $true
 Write-Host -fore yellow “`nYou must enter a mailbox enabled user account as
input to this script.`n”
 return $notValidUser
 }

c15.indd 457c15.indd 457 12/17/07 4:05:28 PM12/17/07 4:05:28 PM

Part IV: Automating Administration

458

 The next code segment uses another if statement to test if a value held in $userMB holds an object that
is the result of running Get-Mailbox with $user as input. This command is used later in the script
before the function is called, so should hold a value when tested at this point. Supplying a valid mailbox -
 enabled user to Get-Mailbox would result in populating $userMB with a mailbox user object that
evaluates as true when tested. If the account is not mailbox - enabled, or cannot be found in Active
Directory, then $userMB is false and the conditional test would ultimately result in true thanks to the
 NOT operator.

 If the user is not mailbox - enabled, $notValidUser is set to $true and an error message is displayed to
inform the administrator the account is not valid. The value of $notValidUser is returned to the
command that called validateUser and all processing for the function is complete.

 if (!($userMB))
 {
 $notValidUser = $true
 Write-Host -fore yellow “`nThe account specified is not mailbox enabled or
could not be found in Active Directory.`n”
 return $notValidUser
 }

 The last if statement in this function tests to see if the mailbox - enabled user object held in $userMB
represents a user mailbox or something else. Exchange Server 2007 provides for other types of mailboxes
such as shared, equipment, and room. The script assumes that administrators only want to create public
folders for user mailboxes using the script. The RecipientTypeDetails property holds the value that
determines the mailbox type.

 This if statement tests the value of RecipientTypeDetails to see if it is not equal to “UserMailbox” .
If it is, the user is mailbox - enabled and is good to go for public folder creation, so the if statement is
skipped. If it is not, the condition is then true and the statement is processed. $notValidUser is set to
 $true and an error message is displayed to inform the administrator the account is not a user mailbox -
 enabled account. The value of $notValidUser is returned to the command that called validateUser
and all processing for the function is complete.

 if ($userMB.RecipientTypeDetails -ne “UserMailbox”)
 {
 $notValidUser = $true
 Write-Host -fore yellow “`nThe mailbox enabled account specified is not a
user mailbox.`n”
 return $notValidUser
 }

 The last command in the function only executes if all three if statements evaluate false and returns the
value stored in $notValidUser , which was set to $false at the beginning of the function.

 return $notValidUser

 The second function definition called validatePFStore is used to determine the current status of the
public folder store that acts as the default public folder store for the user as determined by the mailbox
database where the user ’ s mailbox is located. The errors generated when the public folder store is
unavailable are ambiguous, so this function serves as a more friendly way to inform the administrator
that a problem exists with the public folder store.

c15.indd 458c15.indd 458 12/17/07 4:05:28 PM12/17/07 4:05:28 PM

Chapter 15: User, Group, and Public Folder Administration

459

 To keep track of whether the public folder database is up or down, the $databaseNotUp variable is set
to $false . This is the value that is returned to the command that called validatePFStore if the test
passes and the public folder store is available.

This function checks the public folder database availability
function validatePFStore
{
 $databaseNotUp = $false

 The if statement in this function uses the Get-PublicFolder cmdlet to check the status of the public
folder database identified by the value stored in the variable $PFDatabase . Before this function is called,
a segment of code is used to work out the default public folder store for the user based on the mailbox
database where the user ’ s mailbox is located. From this information the name of the server holding the
public folder store is determined and stored in variable $PFDatabase .

 This value is passed to Get-PublicFolderDatabase , and the Status parameter is used to cause the
command to actually contact the server where the database is located to see if it is mounted. The results
of this query are returned in the Mounted property, which is de - referenced at the end of the command. If
the database was valid, and the server reports that it is mounted, then the value stored in the property
 Mounted is true. The NOT operator changes the results to false and the if statement is skipped.

 However, if the database is not mounted, the condition evaluates as true and the if statement executes.
 $databaseNotUp is set to $true and an error message is written to the display to tell the administrator
to check the status of the public folder store. The value of $databaseNotUp is returned to the command
that called validatePFStore and all processing for the function is complete.

 if (!(get-publicfolderdatabase -identity:$PFDatabase -status).Mounted)
 {
 $databaseNotUp = $true
 Write-Host -fore yellow “`nPublic Folder Database
‘$($server.name)\$($PFDatabase.name)’ is not available. Please check it’s
status.`n”
 return $databaseNotUp
 }

 The last command in the function executes only if the if statement evaluates false and returns the value
stored in $databaseNotUp , which was set to $false at the beginning of the function.

 return $databaseNotUp

 The last function called validateFolder is used to validate the need to create a public folder for the
user. The script assumes that if a public folder already exists for the user, there is no need to create a new
folder. To keep track of whether the user is valid, the $hasFolder variable is set to $false . This is the
value that is returned to the command that called validateFolder if the test passes and the need to
create a folder is valid.

#This function validates the need to create a folder for the user specified
function validateFolder
{
 $hasFolder = $false

c15.indd 459c15.indd 459 12/17/07 4:05:29 PM12/17/07 4:05:29 PM

Part IV: Automating Administration

460

 The only if statement in this function uses the Get-PublicFolder cmdlet to see if a folder with a name
that matches the name of the user already exists. The script assumes that all user - related public folders
are to be created under a top level folder named corporate . Therefore the value used to identify the
public folder for which the test is checking is constructed using the text \corporate and the value
stored in the Name property of the user mailbox object stored in $userMB .

 The same segment of code that works out the default public folder store for the user later in the script is
also used to determine the name of the server holding the public folder store, which is stored in the
variable $server .

 If the Get-PublicFolder command returns a public folder object, then the condition evaluates true and
the statement executes. $hasFolder is set to $true and an error message is displayed to inform the
administrator that a public folder for this user already exists. The value of $hasFolder is returned to the
command that called validateFolder and all processing for the function is complete.

 if (get-publicfolder -identity:”\corporate\$($userMB.name)” -server:$server)
 {
 $hasFolder = $true
 Write-Host -fore yellow “`nA Public Folder for this user already exists.`n”
 return $hasFolder
 }

 The last command in the function only executes if the if statement evaluates false and returns the value
stored in $hasFolder , which was set to $true at the beginning of the function.

 return $hasFolder

 The next code segment does the work that must be completed before calling the validateUser
function. This is the point where $userMB is populated with the results of Get-Mailbox using $user as
the identity.

Get the mailbox information for the specified user
$userMB = Get-Mailbox -Identity:$user

 Now that $userMB is set, the validateUser function is called. If the returned results are false, this if
statement is skipped and processing continues. If the results are true, then processing is complete and
the script is exited.

Validate the user is mailbox enabled and the mailbox is a user mailbox
if (validateUser) { exit }

 The next code segment does the work that must be completed before calling the validatePFStore
function. First the Get-MailboxDatabase cmdlet is used to get information for the mailbox database
where the user ’ s mailbox is located. All mailbox databases have a property called
 PublicFolderDatabase that as the name implies, identifies the default public folder database for those
mailbox users. This is where the public folder should be created.

 The identity of the mailbox database is determined using the Database property from the user mailbox
object stored in $userMB . The PublicFolderDatabase property is then de - referenced from the results
of Get-MailboxDatabase at the end of the command. That value is then set on the variable
 $PFDatabase .

c15.indd 460c15.indd 460 12/17/07 4:05:29 PM12/17/07 4:05:29 PM

Chapter 15: User, Group, and Public Folder Administration

461

 The next command in this segment uses Get-PublicFolderDatabase to determine the server
that holds the public folder database stored in the variable $PFDatabase . The server property is
de - referenced at the end of the command to supply the value to $server . This variable is used in
several other places in the script to supply the name of the server.

Figure out where to create the folder
$PFDatabase = (Get-MailboxDatabase -Identity:$userMB.Database).PublicFolderDatabase
$server = (Get-PublicFolderDatabase -Identity:$PFDatabase).server

 Now that all the prerequisite work is done, it ’ s time to call the other functions. First, the
 validatePFStore function is called to see if the public folder store is available. If the test in
the validatePFStore function determines the store is not available, a true value is returned. The
 if statement executes and the script exits. If the store is available, the results returned by
 validatePFStore are false and the if statement is skipped.

Check if the public folder database is available
if (validatePFStore) { exit }

 Next, the validateFolder function is called to see if the user really needs a public folder. If the user
already has a folder, the result returned by validateFolder is true. The if statement executes and the
script exits. If the user does not already have a folder, the result returned by validateFolder is false,
and the if statement is skipped.

Validate the user needs a folder created
if (validateFolder) { exit }

 If the script has made it to this point, then the user is a valid mailbox - enabled user, the default public
folder for the user is available, and the user does not already have a public folder.

 The next code segment creates the public folder using the New-PublicFolder cmdlet. The input value
for the Name parameter is taken from the full username stored in the Name property of the object stored
in $userMB . The Path parameter value uses a static value that assumes all new user folders are to be
created under the root folder corporate . The Server parameter value is taken from the server name
stored in $server .

 The results of running New-PublicFolder are stored in the variable $newFolder as a public
folder object.

Create the folder, exit if folder creation fails for any reason
$newFolder = New-PublicFolder -Name:$usermb.name -Path:”\corporate” `
-Server:$server -ErrorVariable err

 At this point if the public folder fails creation, there is no need to continue and attempt to set permissions
on a public folder that does not even exist. The next code segment uses an if statement to check if an
error message has been stored in the variable $err by New-PublicFolder . This will be the case only if
there was a problem creating the folder.

 If so the if statement displays the error message stored in $err , then exits the script. The error messages
generated by New-PublicFolder are sufficient to use in this case to tell the administrator there was a
problem creating the folder.

c15.indd 461c15.indd 461 12/17/07 4:05:29 PM12/17/07 4:05:29 PM

Part IV: Automating Administration

462

If ($err -ne $null) { $err; exit }

 If the folder was created successfully, then the next code segment sends the contents of $newFolder to
the display. When the variable $newFolder is used in this way, the information displayed takes the form
of the default output from New-PublicFolder .

$newFolder

 The last code segment uses Add-PublicFolderClientPermission to set the permissions for the user
on the new folder. The identity of the folder is taken from the public folder object stored in $newFolder .
The User parameter input value is taken from the user alias as derived from the mailbox object stored in
 $userMB . The AccessRights parameter input value is a static value of Editor . This access right allows
the users to create and delete their own content in the folder, but does not allow them to delete the folder
or create sub - folders. The Server parameter value is taken from the server name stored in $server .

Set permissions on the folder
Add-PublicFolderClientPermission -Identity:$newFolder `
-User:$usermb.alias -AccessRights:Editor -Server:$server

 Running the newuser - publicfolder.ps1 Script
 Running newuser-publicfolder.ps1 is really quite simple: the name of the script followed by the
name of a mailbox - enabled user. The name supplied can be in the form of the full name encapsulated in
quotes, the alias, the user principal name, or even the user ’ s Global Unique Identifier (GUID). This is
possible because the underlying Exchange Management Shell cmdlet used in the script accepts these
forms of identity.

 As with any good script, newuser-publicfolder.ps1 incorporates some simple validation and error
control. The following examples demonstrate what happens when validation fails in preliminary testing
before any main script processing is attempted.

 When no mailbox - enabled user identity is specified, this error message is generated:

[PS] C:\ > newuser-publicfolder.ps1

You must enter a mailbox enabled user account as input to this script.

 When the mailbox - enabled user identity is either not mailbox - enabled or does not exist, this error
message is generated:

[PS] C:\ > newuser-publicfolder.ps1 bogus

The account specified is not mailbox enabled or could not be found in Active
Directory.

c15.indd 462c15.indd 462 12/17/07 4:05:30 PM12/17/07 4:05:30 PM

Chapter 15: User, Group, and Public Folder Administration

463

 When the mailbox - enabled user identity is for a resource mailbox and not a user mailbox, the following
error message is generated:

[PS] C:\ > newuser-publicfolder.ps1 confrm1

The mailbox enabled account specified is not a user mailbox.

 When a public folder for the mailbox - enabled user already exists, the following error message is
generated:

[PS] C:\ > newuser-publicfolder.ps1 user1

A Public Folder for this user already exists.

 If the default public folder store for the mailbox - enabled user is not available, the following error
message is generated:

[PS] C:\ > newuser-publicfolder.ps1 user3

Public Folder Database ‘MB001\Public Folder Database’ is not available. Please
check it’s status.

 When a mailbox - enabled user who does not already have a public folder is used as the identity,
the script executes and creates the folder. The output is standard for the New-PublicFolder and
Set-PublicFolderPermission cmdlets.

[PS] C:\ > newuser-publicfolder.ps1 user3

Name Parent Path
---- -----------
User Three \Corporate

Identity : \corporate\User Three
User : exchangeexchange.local/Corporate/User Three
AccessRights : {Editor}

 One aspect of a script like newuser-publicfolder.ps1 is that it can be used as a maintenance task.
Because the script validates the need to create a public folder for the given user, if the script is presented
a group of mailbox - enabled users for processing, it is able to create folders as needed while ignoring
users that already have folders.

 To accomplish this, Get-Mailbox can be used to gather a collection of mailbox - enabled users based on
some common property, then pass this collection by pipeline to a foreach command that calls the script
for each user in the collection in turn.

c15.indd 463c15.indd 463 12/17/07 4:05:30 PM12/17/07 4:05:30 PM

Part IV: Automating Administration

464

 For example, the following command gathers all the mailbox - enabled user accounts in the
Organizational Unit “ team , ” and then passes them to the foreach block for execution:

Get-Mailbox -OrganizationalUnit exchangeexchange.local/team | foreach {newuser-
publicfolder.ps1 $_} > c:\results.txt

 The results of each cycle of the script in the foreach command are normally displayed at the command
line, which may be awkward to follow when there are a large number of users to process. To address
this, the command uses a redirection to a text file that can be reviewed for errors by the administrator
once the command completes.

 Summary
 Administrators know scripts automate everyday tasks and ensure consistent results. The scripting
capabilities of Exchange Management Shell offer a level of control unavailable in previous versions of
Exchange Server. Any feature provided by Exchange Server 2007 can be administered via scripting.

 One of the best examples of an administrative task that is easily accomplished via scripting is the bulk
creation of objects, such as mailbox - enabled user accounts. A simple script needs only the minimum
property values required for creation as input. The structured information stored in a comma - separated
value (CSV) input file provides an ideal method for delivering input data to a script. Administrators may
find simple scripts lack certain desirable features.

 More evolved scripts take advantage of functionality already provided by built - in Management Shell
commands. These scripts often include features like error control and logging to present a more complete
solution.

 Scripts often combine multiple administrative tasks into one solution for maximum results with a
minimum of effort. Scripts are capable of employing logic to make complex decisions based on property
values and conditions. These scripts truly maximize the effectiveness of automation.

c15.indd 464c15.indd 464 12/17/07 4:05:30 PM12/17/07 4:05:30 PM

 Reporting, Maintenance, and
Administration

 By this point in reading this book you probably have a list of scripts that you want to put together
because you want to try them out in your messaging environment. As you can imagine, once you
really begin to harness the power of PowerShell you are going to have more and more ideas that
you want to try out. In this chapter we discuss using PowerShell to create some reports and to help
automate some administrative tasks. Because the sheer breadth of what you can accomplish with
PowerShell scripting is immense, we are going to pick just a few examples to give you the tools
you need to create your own scripts.

 This chapter covers:

❑ Reading in files for processing

❑ Advanced output techniques

❑ Examples for using these techniques

 Reading in Files
 This section discusses the following cmdlets:

❑ Import-Csv

❑ Get-Content

 One of the basic functions you will want to perform is to read in a file and work with the data that
you find. You might wish to read in a file with a list of mailboxes that need to be created, or you
might need to update a list of mailboxes with new office information. If you have been using

c16.indd 465c16.indd 465 12/17/07 5:30:24 PM12/17/07 5:30:24 PM

Part IV: Automating Administration

466

Exchange since version 5.5 you might remember all of the account modifications that could be done by
importing and exporting CSV files. If you long for those days, you can relive them using PowerShell!

 The basic command for reading in a file is Get-Content . You can open a file and read it by running
 Get-Content and specifying the file you want to read in:

Get-Content [-path] < string[] > [-totalCount < long >] [-readCount < long >] [-include
 < string[] >] [-exclude < string[] >] [-filter < string >] [-force] [-credential
 < PSCredential >] [-encoding { < Unknown > | < String > | < Unicode > | < Byte > |
 < BigEndianUnicode > | < UTF8 > | < UTF7 > | < Ascii > }] [< CommonParameters >]
Get-Content [-literalPath] < string[] > [-totalCount < long >] [-readCount < long >] [-
include < string[] >] [-exclude < string[] >] [-filter < string >] [-force] [-credential
 < PSCredential >] [-encoding { < Unknown > | < String > | < Unicode > | < Byte > |
 < BigEndianUnicode > | < UTF8 > | < UTF7 > | < Ascii > }] [< CommonParameters >]

 Get-Content requires that a file is provided to read from. The totalCount parameter specifies the
number of lines that are retrieved. To retrieve the contents of the file with the list of databases in it the
syntax would look like the following:

Get-Content C:\data\Databases.txt

 Now that the data has been read in you can loop through each of the lines in the file by using a foreach
loop, which would look like the following:

$dbs = Get-Content C:\data\Databases.txt
foreach ($line in $dbs)
{

}

 Sure, this is okay for simple files but what if you need to import a spreadsheet that has multiple columns
of data? This is a very common scenario because when you create mailboxes you need at a minimum the
User Principal Name (UPN), name, and alias of the user. It would be a hassle to read in three different
text files and then try to keep the data together. Thankfully, there is a way to do this with the Import-Csv
cmdlet. A comma - separated value (CSV) file is a text - based file with the data separated into columns with
commas and can be created with Notepad or Microsoft Office Excel. When you create the CSV file that
you want to read in, be sure that the first line in the CSV has the name of the columns, because this makes
the information easier to reference. Import-Csv has the following syntax:

Import-Csv [-path] < string[] > [< CommonParameters >]

 This is a relatively simple command only requiring a path specified to the CSV file that will be
imported. The cmdlet will return an object with the data read in from the file that can be used in a
pipeline or script.

 An example that we have used previously in the book can also be used to show how to use
Import-Csv. This time, however, more detail will be given to describe how and why it works. First you

c16.indd 466c16.indd 466 12/17/07 5:30:25 PM12/17/07 5:30:25 PM

Chapter 16: Reporting, Maintenance, and Administration

467

need to start with a simple CSV file named mailboxes.csv that has the information you need to create
the mailboxes. The file is created in Notepad and looks like the following list:

UPN,Name,Alias
jstidley@exchangeexchange.local,JoelStidley,jstidley
bkeane@exchangeexchange.local,BrendanKeane,bkeane
jcarpenter@exchangeexchange.local,JimCarpenter,jcarpenter

 To use this file Import-Csv is used to read in the contents of the file and assign it to a variable. Once the
data is assigned to a variable, access to the data is as simple as working with a dataset. A foreach loop
can be used to step through each of the items in the object. Each column from the spreadsheet will be a
property of the items; this makes working with the values of the properties just like working with any
other object, and very easy.

@newUsers = Import-Csv Mailboxes.csv

foreach ($objItem in $newUsers)

{

}

 Passwords are a special case when working in PowerShell. Passwords are stored as a special secured
string value in memory. This means that this string is not stored in plain text and thus requires special
handling. To streamline this process you can prompt for the user to add the password that will be used
for all of the accounts:

$password = Read-Host “Enter password” -AsSecureString
@newUsers = Import-CSV Mailboxes.csv

foreach ($objItem in $newUsers)

{

New-Mailbox -alias $objItem.Alias -name $objItem.Name -UserPrincipalName
$objItem.UPN -Database “MB001\SG03\MB01” -OrganizationalUnit Users -Password
$Password -ResetPasswordOnNextLogon:$true
}

 You pass the data from the file, specifying the appropriate values from the CSV in the spaces in the
New-Mailbox cmdlet. Using the foreach loop you are stepping through the values that have been read
in from the CSV file, line by line. To obtain the value for the current item, all you need to do is look at the
property of the current item that is assigned to the $objItem variable.

 You could take this example a step further by adding in more columns in this spreadsheet so that you
can assign the street address or maybe even the group membership of the new accounts.

c16.indd 467c16.indd 467 12/17/07 5:30:26 PM12/17/07 5:30:26 PM

Part IV: Automating Administration

468

 Exporting Data
 This section discusses the following cmdlets:

❑ Out-File

❑ Export-Csv

 No doubt, it is a requirement to be able to save data for reference at a later time. Natively, PowerShell
provides for outputting data in text format or as a CSV file. Exporting data as it would appear onscreen
to a text file is as simple as piping the data to Out-File and specifying the filename:

Out-File [-filePath] < string > [[-encoding] < string >] [-append] [-width < int >] [-
inputObject < psobject >] [-force] [-noClobber] [-whatIf] [-confirm]
[< CommonParameters >]

The filePath parameter is positional so without any switches Out-File expects to
have information piped to it and a filePath value provided which will be the file
written. The noClobber switch specifies that if there is a file with the name
specified in the filePath it will not overwrite the contents as is the default
behavior for the cmdlet. Using the encoding parameter the file being written can be
encoded in several different format by choosing Unicode, UTF7, UTF8 or ASCII.

 To write a file with a list of all mailboxes in an Exchange organization you would simply run:

Get-Mailbox | Out-File C:\data\allmailboxes.txt

 You could then open that file in a text editor for reference. But what if you have a complex set of data
that you want to perform analysis against? You could take that text file and massage it until it worked in
Excel or you could use simply the Export-Csv cmdlet. The Export-Csv file has the following syntax:

Export-Csv [-path] < string > -inputObject < psobject > [-force] [-encoding < string >]
[-noTypeInformation] [-noClobber] [-whatIf] [-confirm] [< CommonParameters >]

 Export-Csv has syntax similar to the Out-File cmdlet except it has the noTypeInformation switch,
which removes the first line of the exported CSV file which, by default, is the type of object that was
exported to the file.

 To get a list of all the attributes for all of the mailboxes in the Exchange organization you would simply run:

Get-Mailbox | Export-CSV C:\data\allmailboxes.csv

 Most likely you would select specific objects to include in the export, which you could do by using
 select-object before the Export-Csv cmdlet.

 A number of excellent third - party products can be used to export data. Most of these third - party
products function just like Export-CSV and Out-File in that they allow for exporting data by piping
the data at the command line to the third - party cmdlets.

c16.indd 468c16.indd 468 12/17/07 5:30:26 PM12/17/07 5:30:26 PM

Chapter 16: Reporting, Maintenance, and Administration

469

 One note when working with this: make sure that you are exporting data in the right format. Many of
the mailbox sizes and statistics are typed as byte quantified size and most cmdlets that you would
pipe this data to would expect the data to be a string or an integer. If these controls receive the byte
quantified size typed data, they can ’ t properly format it. You can find an example of working with
byte quantified size values and third - party products later in this chapter.

 Sending Email from PowerShell
 When writing a monitoring PowerShell script it is essential for the script to be able to email an alert
when something falls outside of a normal condition. Of course I know what you are thinking, “ Why
would you send an email if email was down? ” or perhaps you are thinking, “ Isn ’ t that just like sending
an email to the users to let them know that they can ’ t get to their email? ” Most likely you would send the
email through a separate system, perhaps even to a mobile device through text messages.

 Sending an email through PowerShell is pretty straightforward to those familiar with the .NET
Framework. To be able to create a new SMTPClient object you use the New-Object cmdlet and specify
the name of the class used to create the object. After creating the $smtp object, the Send method can be
used with specific parameters called overloads to specify the information needed to send an email. The
following lines of a PowerShell script are all you need to send a message:

$smtpServer = “relay.exchangeexchange.local”
$smtp = new-object Net.Mail.SmtpClient($smtpServer)
$smtp.Send(“fromaddress@exchangeexchange.com”,”administrators@exchangeexchange
.com”,”Message Subject”,”Message body is typed here”)

 In this example the sender, recipient, message subject, and body are all set to a specific string. You can
make this code snippet a little more sophisticated by putting variables in place so that you can send the
error message or even the report directly from PowerShell using a script.

 Real - World PowerShell Examples
 Now that we have covered some of the more advanced PowerShell techniques, let ’ s try to apply these in
some real - world examples.

 Applying Default Settings
 System policies allowed an administrator to set mailbox defaults on mailbox stores just by creating a
policy with the required settings and then choosing which stores would inherit the policy settings. This
saved hours of work and also reduced the possibility of an administrator modifying the standard.
System policies don ’ t exist in Exchange Server 2007. There isn ’ t any specific feature that fills that need
either. However, using PowerShell you can create a very flexible system policy alternative.

 Essentially the process involves creating a couple standard PowerShell scripts for each of the standards,
providing a list of stores that these standards should be applied to, and then scheduling to run the
scripts with Windows Scheduler (AT) or another scheduler program.

c16.indd 469c16.indd 469 12/17/07 5:30:26 PM12/17/07 5:30:26 PM

Part IV: Automating Administration

470

 The first line of the script adds the Exchange snap - in. If you run a PowerShell script from the command
line you don ’ t get the Exchange management snap - in, so you need to add it manually. The second line of
the script grabs the parameter that is passed to the script on the command line. The $args special
variable is an array of the arguments that were passed to the script on the command line. The first item
in the array is the first parameter specified on the command line. The following example uses a single
argument in the script to specify the file to open and parse the contents of it so that you can determine
which mailbox stores the script needs to modify:

Add-PSSnapin *Exchange* | out-null

$MBItems = get-content -path $args[0]

 You use the Get-Content cmdlet to open the filename that you passed on the command line. Next, for
each line read in from the file, you are going to run a Set-MailboxDatabase cmdlet to set the defaults
that have been defined for your Exchange users. For a detailed discussion of the Set-MailboxDatabase
cmdlet please reference Chapter 8 . You will want to construct a Set-MailboxDatabase command that
sets all relevant settings to meet your standard.

foreach ($objItem in $MBItems)
{
Set-MailboxDatabase $objitem -IssueWarningQuota 300MB -ProhibitSendQuota 400MB -
ProhibitSendReceiveQuota 600MB -ItemRetention 21.00:00:00 -MailboxRetention
21.00:00:00 -RetainDeletedItemsUntilBackup:$true
}

 Next you need to create the text file that will have a list of the mailbox stores that you want to apply this
policy to. In this file you should list each store ’ s identity on its own line.

 The identity for the mailbox stores are in this format: server name\storage group\mailbox store.
A sample list of mailbox stores would look like this:

MB001\SG01\MB01
MB001\SG03\MB03
MB002\SG10\MB10
MB010\SG30\MB30

 Now you have a script named SetStandardPolicy.ps1 that is custom tailored to set the standard. You
also have a text file called StandardStores.txt . To make sure that these standards get applied and
stay applied no matter what changes are made to the environment, you need to schedule the policy
script to be applied periodically. I would suggest having these run at least once a day, if not more often.
Now, create a scheduled task using Windows Scheduled Tasks or other task scheduler that runs every
two hours or perhaps an interval that better fits your business environment:

PowerShell.exe -Command ‘SetStandardPolicy.ps1 StandardStores.txt’

 This ensures that each store listed in the StandardStores.txt file gets your standard settings. If you
need to add or subtract a store from the list, all you need to do is adjust the text file; no need to modify
the script when a database needs to be added or removed.

c16.indd 470c16.indd 470 12/17/07 5:30:27 PM12/17/07 5:30:27 PM

Chapter 16: Reporting, Maintenance, and Administration

471

 In order to adapt this for all of your database standard profiles in your organization you can create a
corresponding script and text file for each. For instance, you may create a script for the executive or
contract worker mailbox size limits and then schedule those scripts to be run as well. Similar scripts can
be created to set standards to specific mailboxes, public folder databases, and even server configurations.

 Reporting Tasks with PowerShell
 In previous versions of Exchange it was always frustrating trying to create reports that told what was
happening in your organization. If your manager asked you to create a report of all the mailbox sizes for
your 100 Exchange servers you would either be creating a VBScript that used at least three different
methods of getting information (CDO, WebDAV, ADSI, and so on) or you were doing a lot of clicking
and exporting to a comma - separated values (CSV) file to import and massage in Microsoft Office Excel.
We are going to cover a couple scenarios to get you started down the path of creating simple and
powerful scripts to report on what is going on in your Exchange organization.

 It seems like every few weeks a new PowerShell utility or tool is coming on the market. This is really
good news for those of you who want to keep improving your reports and reduce the time it takes to
troubleshoot and develop new scripts.

 One of the many excellent tools that are available and the one that I have been able to spend the most
time with is PowerGadgets, which enables you to create nice looking charts easily as you pipe your data
to the gadget.

 Reporting on Online Defragmentation and Backups
 One of the more important factors to keep an eye on in your environment is whether online
defragmentation is completing in a satisfactory length of time on all of the databases in the environment.
This is important because if online defragmentation isn ’ t completing at about once every two weeks, the
database is going to grow larger than it needs to and it isn ’ t going to perform as well as it can. If
maintenance is not running often enough you may need to increase the length of the maintenance period
or make sure that the maintenance period isn ’ t overlapping with the backups.

 The first thing you need to do is to get a list of each of the mailbox stores on the local server and assign
the list to the variable $db . There are a number of methods of determining the name of the local server;
this example obtains the MachineName property from the System.Environment object. You need to
select only the local server because Get-EventLog doesn ’ t provide access to remote event logs through
PowerShell. You can, however, use Get-WMIObject to query a remote event log. This example sticks
with Get-EventLog :

$servername = [System.Environment]::MachineName
$db = Get-StorageGroup -Server $servername | Get-MailboxDatabase

 Now that you have retrieved the mailbox store list, you need to start looking for the right information
from the event logs for each of these mailbox stores. When a database completes an online
defragmentation pass either an event with an event id of 701 or 703 with a source of ESE is written to the
event log. As you can see from Figure 16 - 1 the event provides information about the online
defragmentation including the number of times it has completed. This level of detail in the event log is
new to Exchange Server 2007 Service Pack 1.

c16.indd 471c16.indd 471 12/17/07 5:30:27 PM12/17/07 5:30:27 PM

Part IV: Automating Administration

472

Figure 16-1

 To find this event for each database you need to filter out all non - essential events. To do this you can use
 Get-EventLog and specify that you want to look only at the Application Log. You then need to look at
only the events that have an event ID of 701 or 703 and have a source of ESE.

$EventLogs = get-EventLog -LogName Application | where-object {$_.EventID -eq 703 -
or $_.EventID -eq 701 -and $_.Source -eq ‘ESE’ }

 As you can see in Figure 16 - 2 this returns a list of all the events in the event log with this critera. This is
still too much data to be useful. Because you are interested in whether all databases have been
completing the online defragmentation you need to pass in the database variable that you got earlier.

c16.indd 472c16.indd 472 12/17/07 5:30:28 PM12/17/07 5:30:28 PM

Chapter 16: Reporting, Maintenance, and Administration

473

 Because the database name does not have to be be unique on a single server you need to look for the
database path that is listed in the event. So for every item in the storage group list you need to run the
previous line of code, however you are also going to look for the database path as one of the variables
that are plugged into the standard message text. You can do this by piping the output of Get-EventLog
to another Where-Object . This Where-Object would need to use the $objItem variable to enumerate
through your list of mailbox stores. In particular you are going to look at the EdbFilePath property
because this is listed in the event.

 Where-Object { $_.ReplacementStrings -like $objItem. EdbFilePath} | Select-Object
-first 1

 Notice too that after you narrow down your list of events there is still the possibility of having more than
one event returned, so this example used Select-Object -first 1 to return only the first event from
the list, which by default is the newest. You are now all set; you can add a couple Write-Host cmdlets
to display the information that you are looking for. And you end up with the following script:

$servername = [System.Environment]::MachineName
$db = Get-StorageGroup -Server $servername | Get-MailboxDatabase

foreach ($objItem in $db)
{
$EventLogs = get-EventLog -LogName Application | Where-Object {$_.EventID -eq 703 -
or $_.EventID -eq 701 -and $_.Source -eq ‘ESE’ } | Where-Object
{$_.ReplacementStrings -like $objItem.EdbFilePath} | select-object -first 1
Write-host ‘ Mailbox store: ‘ $objItem.Identity
Write-host ‘ Last Defrag Completed: ‘ $EventLogs.TimeGenerated
Write-host ‘ ‘
}

Figure 16-2

c16.indd 473c16.indd 473 12/17/07 5:30:28 PM12/17/07 5:30:28 PM

Part IV: Automating Administration

474

 Notice in Figure 16 - 3 that if maintenance hasn ’ t run within the period of time that the server has event
logs for, it shows up as a blank value for the last time the defrag was completed. In that case either
maintenance hasn ’ t completed in a sufficient amount of time or the event log size is too small and should
be increased in size to keep more data.

Figure 16-3

 This report would also be an excellent place to report when the last time a backup was run on each of the
stores. With the work you have already done to get this report it is a really easy task. In fact, the new
script would look like the following:

$servername = [System.Environment]::MachineName
$db = Get-StorageGroup -Server $servername | Get-MailboxDatabase -status

foreach ($objItem in $db)
{
$EventLogs = get-EventLog -LogName Application | Where-Object {$_.EventID -eq 703 -
or $_.EventID -eq 701 -and $_.Source -eq ‘ESE’ } | Where-Object {
$_.ReplacementStrings -like $objItem.EdbFilePath} | Select-Object -first 1

Write-Host ‘ Mailbox store: ‘ $objItem.Identity
Write-Host ‘ Last Defrag Completed: ‘ $EventLogs.TimeGenerated
Write-Host ‘ Last Full Backup: ‘ $objItem.LastFullBackup
}

 What was changed to get this information? You add the status switch to the Get-MailboxDatabase
cmdlet because this is required to query the backup, mount, or online maintenance status. If you do not
specify this switch the cmdlet will return $null for those properties. The last modification to the script
was to add another Write-Host to be able to write the LastFullBackup property to the console. The
output for this script looks like that in Figure 16 - 4 .

c16.indd 474c16.indd 474 12/17/07 5:30:28 PM12/17/07 5:30:28 PM

Chapter 16: Reporting, Maintenance, and Administration

475

 If you wanted to take this script even further you could put some logic in the report so that if
maintenance hadn ’ t run in two weeks or perhaps a backup hasn ’ t run in two days, the report would
highlight the problematic mailbox store in red to make it easier to distinguish. Rather than outputting
the data to the screen you could also create an object and store the data in it for additional parsing later.
You see an example of this later in this chapter.

 Reporting Mailbox Size
 A common task a messaging administrator performs is to report on the mailbox size of the user
population. This example shows how to report which mailboxes are close to the limit, and capture a list
of users who do not have limits assigned. Get-MailboxStatistics returns a list of mailboxes and
statistics about those mailboxes.

 Get-MailboxStatistics returns all mailboxes and the statistics for each. The results look something
like those in Figure 16 - 5 .

Figure 16-4

Figure 16-5

c16.indd 475c16.indd 475 12/17/07 5:30:29 PM12/17/07 5:30:29 PM

Part IV: Automating Administration

476

 This may be useful if you want to manually go through a large list of mailboxes and the statistics. In this
case, you are looking for mailboxes that are approaching the limit or have not been set, so you need to
create a filter. To filter you can look at the StorageLimitStatus field. The valid values for this are
 NoChecking , BelowLimit , IssueWarning , ProhibitSend , or MailboxDisabled depending on where
the mailbox size falls within the limits that have been set. A list of all mailboxes that are flagged with
 IssueWarning , ProhibitSend , or MailboxDisabled tells you which mailboxes have crossed one of
the set limit thresholds. Also, to make sure that none of the Exchange administrators has disabled limits
on any of the mailboxes you can add NoChecking to the filter as well. To do this, you pass the results of
 Get-MailboxStatistics to the Where-Object cmdlet as follows:

get-MailboxStatistics | Where-Object {
“IssueWarning”,”ProhibitSend”,”MailboxDisabl ed”,”NoChecking” -Contains
 $_.StorageLimitStatus }

 Figure 16 - 6 shows the resulting list of all mailboxes that fit this criterion; however, this is still not as
effective as it needs to be.

Figure 16-6

 If this list were much longer it might be difficult to determine which user falls into each group. As shown
in Figure 16 - 7 , you can pipe this list to Sort-Object and arrange this list by the StorageLimitStatus
and the TotalItemSize properties:

Sort-Object StorageLimitStatus, TotalItemSize

c16.indd 476c16.indd 476 12/17/07 5:30:29 PM12/17/07 5:30:29 PM

Chapter 16: Reporting, Maintenance, and Administration

477

 The standard columns that are shown are not very helpful. Use the following code to show
 DisplayName and TotalItemSize by piping the results. Figure 16 - 8 shows the outcome.

Format-Table DisplayName, StorageLimitStatus TotalItemSize

Figure 16-7

 Figure 16 - 8

c16.indd 477c16.indd 477 12/17/07 5:30:29 PM12/17/07 5:30:29 PM

Part IV: Automating Administration

478

Figure 16-9

 That is making some progress, however the TotalItemSize column is very unfriendly. Could you
imagine handing this report to your supervisor? Does your supervisor want to see the size of the user
mailboxes in bytes? As you recall from earlier in this book, PowerShell is based on the .NET Framework,
which means that certain functions of the Framework are available within PowerShell. You can actually
convert the value of TotalItemSize to kilobytes, megabytes, gigabytes, or terabytes from within the
command by modifying the last Format-Table command to modify this value:

 Format-Table DisplayName, @{expression = {$_.TotalItemSize.Value.ToMB()}} -Auto

 This produces the result shown in Figure 16 - 9 .

 There is promise here. You have a readable number and a nice ordered list, however the title of
the converted column is pretty ugly. You can assign a different label to a value column when using
 Format-Table by adding a semicolon, the keyword label, and then the new name. The following
example shows how to change the label to TotalItemSizeMB , however any suitable title can be chosen:

Format-Table DisplayName, @{expression =
{$_.TotalItemSize.Value.ToMB()};label=”TotalItemSizeMB”} -Auto

 Now you have a final report. To save this so that you can review it later or send it to others you should
pipe this data out to a file. You can do this by using the Out-File cmdlet as was discussed earlier in
this chapter:

out-file C:\Data\MailboxReport.txt

c16.indd 478c16.indd 478 12/17/07 5:30:30 PM12/17/07 5:30:30 PM

Chapter 16: Reporting, Maintenance, and Administration

479

 The final script when added together looks like this:

get-MailboxStatistics | where-object
{“IssueWarning”,”ProhibitSend”,”MailboxDisabled”,”NoChecking” -contains
$_.StorageLimitStatus} | sort-object StorageLimitStatus, TotalItemSize | format-
table DisplayName, StorageLimitStatus,
@{expression={$_.TotalItemSize.Value.ToMB()};label=”TotalItemSize(MB)”} | out-file
-filepath C:\data\MailboxReport.txt

 What if you want to export this to a chart, perhaps using PowerGadgets? Chances are you would just
want to list the sizes of the largest mailboxes near the quota. To do this you modify the script above so that
rather than piping the data to the Format-Table cmdlet, you pipe the data to a Select-Object cmdlet.
 Select-Object doesn ’ t accept changing the label so you also have to remove the label on your converted
 TotalItemSize value. Be sure to run this on a server that has the PowerGadgets client installed.

Add-PSSnapin PowerGadgets
get-MailboxStatistics | where-object
{“IssueWarning”,”ProhibitSend”,”MailboxDisable d”,”NoChecking” -contains
$_.StorageLimitStatus} | sort-object TotalItemSize | select-object DisplayName,
@{expression={$_.TotalItemSize.Value.ToMB()}} |out-chart

 You will get a chart very similar to the one in Figure 16 - 10 .

Figure 16-10

c16.indd 479c16.indd 479 12/17/07 5:30:30 PM12/17/07 5:30:30 PM

Part IV: Automating Administration

480

 Why did I say similar to Figure 16 - 10 ? Well, to get this printed in the book I had to change the font sizes
and colors. If you were to run this, you would still get a nice looking chart. Of course, you could also
spend five minutes modifying the colors, sizes, and other formatting options to make it look just like you
want it to.

 You can obtain more information about using PowerGadgets including a free trial of the software at
 powergadgets.com .

 Creating reports for mailbox size has always been a center of contention in the Exchange administrators
communities. The debate has now changed from how to create the report into how detailed to make the report
now that the tools are available.

 Getting the Database File Size
 Another interesting script that can be used to show off some of these PowerShell techniques is getting the
database file sizes on disk. This script would be useful when determining backup sizing, or storing the data
to trend file growth:

$server = [System.Environment]::MachineName
$db = get-MailboxDatabase -server $server

foreach ($objItem in $db)

{
 $dbsize = get-childitem $objItem.EdbFilePath
 Write-Host “Server\StorageGroup\Database” $objItem.Identity
 Write-Host “Size(KB)” $dbSize.Length

 }

 The first thing this script does is obtain a list of all of the mailbox stores on the server. Then for each
mailbox store you cycle through a foreach loop and get the file path for the database. Then you return
the mailbox store identity and the length of the file. You are returned a result set like the one in Figure 16 - 11 .

Figure 16-11

c16.indd 480c16.indd 480 12/17/07 5:30:30 PM12/17/07 5:30:30 PM

Chapter 16: Reporting, Maintenance, and Administration

481

 The result set that is returned is pretty ugly and difficult to read. It would be better to return the result
in a table. How can you do this when the identity and the file length are the results of two separate
commands that are run? You can create a PowerShell object named $returnedObject using the
 New-Object cmdlet for each mailbox store and then you can display the results together. When using
the Add-Member cmdlet to add values to the PowerShell object you need to define the type, name, and
value of the property. In the following example you can see two NoteProperties added to the object,
one named Server\StorageGroup\Database and the other named Size(KB) , each with a value
assigned to it from the respective command:

$server = [System.Environment]::MachineName
$db = get-MailboxDatabase -server $server

foreach ($objItem in $db)

{

 $dbsize = get-childitem $objItem.EdbFilePath

 $returnedObj = new-object PSObject
 $returnedObj | add-member NoteProperty -name “Server\StorageGroup\Database” -
value $objItem.Identity
 $returnedObj | add-member NoteProperty -name “Size(KB)” -value $dbSize.Length

 $returnedObj

}

 The output, shown in Figure 16 - 12 , is in a nice table format that you can easily read or output to a file for
reference.

Figure 16-12

c16.indd 481c16.indd 481 12/17/07 5:30:31 PM12/17/07 5:30:31 PM

Part IV: Automating Administration

482

 What can you do about formatting the file size so that it is shown in a more “ user - friendly ” number
format? You can divide the length by 1024 kilobytes so that the size is represented in megabytes. Also,
you can do some standard formatting as well. The following code shows modifying the format of the
output value:

$server = [System.Environment]::MachineName
$db = get-MailboxDatabase -server $server

foreach ($objItem in $db)

 {

 $dbsize = get-childitem $objItem.EdbFilePath

 $returnedObj = new-object PSObject

 $returnedObj | add-member NoteProperty -name “Server\StorageGroup\Database” -
value $objItem.Identity
 $returnedObj | add-member NoteProperty -name “Size(MB)” -value (“{0:n0}” -f
($dbSize.Length/1024KB))

 $returnedObj

 }

 Notice how the data looks in Figure 16 - 13 . The size is represented in megabytes and with no numbers
after the decimal point.

Figure 16-13

 This formatting was done by using the filter {0:n0} when the value is added to $returnObject . This
filter means that the data being entered is a number and should have the (n)umber followed by zero (0)
digits after the decimal. If you wanted to have one number after the decimal you could change this filter
to {0:n1} .

c16.indd 482c16.indd 482 12/17/07 5:30:31 PM12/17/07 5:30:31 PM

Chapter 16: Reporting, Maintenance, and Administration

483

 Simple Monitoring with PowerShell
 Nowadays most enterprises have an in - place monitoring solution; however, at times you may need to
create a simple script to monitor a condition that is temporary enough that developing a script for the
monitoring tool would take too much time or effort. Look at a simple example of a script that you could
schedule to run every morning to check whether full backups have run on all of the databases in the last
two days.

 The first line returns a file of all of the mailbox databases in the organization, however to be able to get
information on the backup status you have to specify the Status switch parameters. That information is
passed to the Select-Object cmdlet to reduce the amount of data passed to the $results ; in this
example the only two values that matter are the identity or the name of the database and
 LastFullBackup , which is the time the last full backup completed successfully.

$results = Get-MailboxDatabase -Status | Select-Object Identity, LastFullBackup

 Most of this script you have seen in other parts of this book. The new cmdlets introduced here are
Get-Date and New-TimeSpan . The Get-Date cmdlet simply returns the date and time when the cmdlet
is run and has the following command syntax:

Get-Date [[-date] < DateTime >] [-displayHint { < Date > | < Time > | < DateTime > }] [-
format < string >] [-year < int >] [-month < int >] [-day < int >] [-hour < int >] [-minute
 < int >] [-second < int >] [< CommonParameters >]
 Get-Date [[-date] < DateTime >] [-displayHint { < Date > | < Time > | < DateTime > }] [-
uFormat < string >] [-year < int >] [-month < int >] [-day < int >] [-hour < int >] [-minute
 < int >] [-second < int >] [< CommonParameters >]

 The displayHint parameter can be used to specify what portion you want returned. You can have it
return just the date or the time or both the date and the time. The format and the uformat parameters
can be used to return a standard or customized formatted date and time.

 The New-TimeSpan cmdlet returns the difference between the two times that are passed to it. The
 New-TimeSpan cmdlet has the following syntax:

New-TimeSpan [[-start] < DateTime >] [[-end] < DateTime >] [< CommonParameters >]
 New-TimeSpan [-days < int >] [-hours < int >] [-minutes < int >] [-seconds < int >]
[< CommonParameters >]

 There are two ways to use New-TimeSpan . One is to create an object that represents a time span and the
other is the way we are using it in our example, to determine the time span between two dates.

 In the following script the current time is passed using Get-Date and then the date that the last backup
ran is passed to determine the time that has elapsed since the last full backup completed. Finally, the
script tests whether that time is greater than two days and if it is, it sends an email with information
about the database that has not had a successful backup in the last two days.

c16.indd 483c16.indd 483 12/17/07 5:30:31 PM12/17/07 5:30:31 PM

Part IV: Automating Administration

484

$results = Get-MailboxDatabase -Status | Select-Object Identity, LastFullBackup

foreach ($objItem in $results)
{

 $timesincelastbackup = New-TimeSpan $($objItem.LastFullBackup) $(Get-Date)

 If ($timesincelastbackup.days -gt 2)
 {

 $messagesubject = “Backup Alert for “ + $objItem.Identity
 $messagebody = “Warning “ + $objItem.Identity + “ has not completed a
backup in “ + $timesincelastbackup.days + “ days!”

 $smtpServer = “relay.exchangeexchange.local”
 $smtp = new-object Net.Mail.SmtpClient($smtpServer)

$smtp.Send(“backupalerts@exchangeexchange.com”,”administrators@exchangeexchange.com
”,$messageSubject,$messagebody)

 }
}

 This script can be modified to send only one email with a list of all of the backups that are outside of the
normal parameters by creating a variable that would have a list of all of the offending databases and
then sending the email at the end of the process. Also, the same concept can be used to send alerts for
message queues that are continuing to increase in size or for a variety of other conditions.

 A number of other fairly simple monitoring scripts can be created to make sure you can keep a finger on
the pulse of your Exchange organization:

❑ Monitor site link costs to make sure that the Active Directory administrators have not modified
something that would affect Exchange message delivery.

❑ Monitor memory and storage I/O throughput.

❑ Monitor and trend Hub Transport queue lengths.

 Summary
 Windows PowerShell can be used for a variety of monitoring, reporting, and administrative tasks. The
possibilities for what can be accomplished to reduce errors, increase productivity, and provide better
information about an Exchange organization is endless.

 This chapter went into a little more detail on reading in files, command - line arguments, as well as
exporting data into files and email. You then went through a few real - world examples using these
techniques that you can use and adapt in your organization today. You now should have an
understanding of the main components needed to create your own scripts.

c16.indd 484c16.indd 484 12/17/07 5:30:32 PM12/17/07 5:30:32 PM

 Using the . NET Framework to
Automate Exchange

PowerShell Tasks

 In this chapter you ’ ll see how to leverage Exchange PowerShell from within the .NET Framework
and how to make a basic web - based page to run PowerShell cmdlets. We also discuss some ideas
on what can be done to use .NET. This chapter involves some programming, so previous experience
would be helpful.

 PowerShell is built on the .NET Framework, and the only management interface exposed for Exchange
Server 2007 is the PowerShell cmdlets, so running PowerShell from within something like C# or
VB.NET would be easy. Because this is the only interface that is exposed, the Exchange product team
uses the PowerShell cmdlets to provide the Exchange Management Console graphical management
tool. You can run PowerShell cmdlets easily from within the .NET Framework, and you will work
through a few examples in this chapter.

 This chapter covers the following topics:

❑ Accessing PowerShell from the .NET Framework

❑ Solving problems with PowerShell and the .NET Framework

 Accessing PowerShell from the
. NET Framework

 To be able to work with PowerShell from the .NET Framework, you need to first download the
Windows PowerShell Software Development Kit (SDK) from Microsoft. To be able to run any of
the Exchange cmdlets you will also need the Exchange Server 2007 management tools installed.

c17.indd 485c17.indd 485 12/17/07 4:06:49 PM12/17/07 4:06:49 PM

Part IV: Automating Administration

486

 The Windows PowerShell SDK has been rolled into part of the Windows Software Development for
 Windows Vista and .NET Framework 3.0 Runtime Components. You can obtain the Windows Software
Development for Windows Vista and .NET Framework 3.0 Runtime Components from Microsoft here:
 microsoft.com/downloads/details.aspx?familyid=c2b1e300-f358-4523-b479-
f53d234cdccf & displaylang=en .

 Although you can use C# and Visual Basic.NET to automate Windows PowerShell, this chapter focuses
on C# examples. For those readers who are more comfortable with VB.NET, the following examples can
be converted into usable VB.NET.

 Star ting a Web Project
 This example leads you through the creation of several simple pages to demonstrate how to get started
using Windows PowerShell to manage your Exchange servers from the .NET Framework. After installing
the Windows SDK along with the required Windows PowerShell components, create a new C# ASP.NET
web application project in Visual Studio 2005. Start Visual Studio and create a new C# web project.

 Then you will need to add a reference to System.Management.Automation.dll in your web project.
The Windows PowerShell SDK assemblies are installed by default in C:\Program Files\Reference
Assemblies\Microsoft\WindowsPowerShell\v1.0\ . To add a reference from within Visual Studio,
click the Website menu, then click Add Reference. Click the Browse tab and then navigate to the location
of the System.Management.Automation.dll and click OK.

 In your newly created web project you will be able to open the Default.aspx.cs file and add several
of the following directives to your code to reference the PowerShell libraries as well as the Collections
.ObjectModel library:

using System.Management.Automation;
using System.Management.Automation.Host;
using System.Management.Automation.Runspaces;
using System.Collections.ObjectModel;

 The following list describes what each of these namespaces does:

❑ System.Management.Automation : This is the root namespace, and it contains the classes, enu-
merations, and interfaces required to create customer cmdlets.

❑ System.Management.Automation.Host : This contains the classes, enumerations, and interfaces
that a cmdlet uses to communicate with the host application.

❑ System.Management.Automation.Runspaces : This contains the classes, enumerations,
and interfaces used to create a runspace. This allows for a Windows PowerShell pipeline to
run cmdlets.

❑ System.Collections.ObjectModel : This contains classes that can be used as collections.
This isn ’ t specific to Windows PowerShell, however it proves useful to the examples used
in this chapter.

c17.indd 486c17.indd 486 12/17/07 4:06:50 PM12/17/07 4:06:50 PM

487

Chapter 17: Using the .NET Framework

Figure 17-1

 Now that the SDK is installed, the required library is referenced and the directives are added, so you can
start accessing PowerShell from your web project.

 The Windows PowerShell Runspace
 If you aren ’ t a programmer or have no experience with programming, you might find the next few
paragraphs confusing. Here are a few definitions to help you out:

❑ A class is a container of properties, functions, and behaviors that describe an object.

❑ An object is created from a class and is assigned properties and values.

❑ A method is a piece of code that can be run. A method is usually a discrete action that can be run.

 After adding the directives, Default.aspx.cs should look similar to the file shown in Figure 17 - 1 .

c17.indd 487c17.indd 487 12/17/07 4:06:50 PM12/17/07 4:06:50 PM

Part IV: Automating Administration

488

❑ Overloaded methods are methods that parameters are passed to modify how the action completes.

❑ Casting is the process of converting an object from one data type to another. For example, an
 integer can be converted to a string.

 To be able to access PowerShell from the .NET Framework, a runspace must be created. A runspace object
provides the ability for an application to be able to host or execute pipelines in a controlled manner. A
runspace is created using the RunspaceFactory class. This class has only one method, CreateRunspace .
This CreateRunspace method has four overloaded methods and the one of interest is the overload
that requires a RunspaceConfiguration object as input. The RunspaceConfiguration object
provides the ability to pass configuration parameters to the runspace. The following example creates a
 RunspaceConfiguration object and adds in the Exchange administration snap - in so that you are able to
access the Exchange tools. If a runspace is created without passing a RunspaceConfiguration object, the
runspace would not have access to the Exchange management tools. The RunspaceConfiguration
object can be created with the number of PowerShell snap - ins that you require.

 The code to create the runspace and add the Exchange snap - in looks like this:

RunspaceConfiguration EMSConfig =
 RunspaceConfiguration.Create(); PSSnapInException
 snapInException = null;
PSSnapInInfo info =
 EMSConfig.AddPSSnapIn(“Microsoft.Exchange.Management.PowerShell.Admin”,
 out snapInException);
Runspace EMSRunSpace =
 RunspaceFactory.CreateRunspace(EMSConfig);
 EMSRunSpace. Open();

 To enable the running of commands, an instance of a pipeline object must be created from the runspace
that you have already created. The pipeline object provides the ability to stream the output of one com-
mand into the next command in the list. To create the pipeline, use the CreatePipeline method of the
runspace that you created. The CreatePipeline method has overloaded methods that enable you to
pass single commands or an entire pipeline of commands that you want to run. A simple example would
be to have the pipeline run Get-Mailbox , as follows:

Pipeline pipeLine = EMSRunSpace.CreatePipeline(“Get-Mailbox”);

 Now that you have specified the command that the pipeline will execute, the Invoke method of your
pipeline object can be used to return a PSObject collection of the results of the command you ran. The
 PSObject collection results can be cycled through and inspected or used elsewhere in your code.
The following example uses a foreach loop to cycle through each of the items in the returning
PSObject collection and temporarily assigns the Name property value to a string:

Collection < PSObject > cmdData = pipeLine.Invoke();

foreach (PSObject cmdlet in cmdData)
 {

string cmdletInfo =
 cmdlet.Properties[“Name”].Value.ToString();

}

c17.indd 488c17.indd 488 12/17/07 4:06:51 PM12/17/07 4:06:51 PM

489

Chapter 17: Using the .NET Framework

 To provide useful information you will most likely need to provide more than just a single cmdlet
 without any parameters. To run a more complicated set of commands or even a full script, call the
 CreatePipeline method with the entire command text. The code would look something similar to
the following:

Pipeline pipeLine = EMSRunSpace.CreatePipeline(“get-mailbox
 | where-object –
filterscript {$_.DisplayName = \”Rivera\”}”);

 At this point it may be beneficial to mention the CreateNestedPipeline method. This method works
much like CreatePipeline does in the previous example; however, it is used if you need to build
another pipeline when you already have one running in your runspace. This allows you more flexibility
in your application because you do not have to wait for the current pipeline to complete before creating
the new pipeline.

 Calling the method with the entire command text is a quick way to run a simple set of commands. But,
what if you need to programatically build a conditional command list? Perhaps if certain conditions were
met you might need to add specific cmdlets to the pipeline. The CreatePipeline method can also create
a pipeline without first passing it a command or a list of commands. The commands or cmdlets and their
parameters can be added on the fly to the pipeline. This is accomplished by instantiating command objects
from the Command class and then adding the command to the pipelines collection of commands. The
 command object (which equates to a cmdlet or pre - written script) in turn might require a set of parame-
ters. The way command parameters are added to a command is very simular to the way commands are
added to the pipeline. First instantiate a CommandParameter object from the CommandParameter class,
passing the list of parameters to its constructor. Then add the CommandParameter object to the
 command ’ s parameters collection. This example shows how to create a runspace and then add the
get-mailbox command without any parameters:

Runspace EMSRunSpace = RunspaceFactory.CreateRunspace();
EMSRunSpace.Open();
Pipeline pipeLine = EMSRunSpace.CreatePipeline();
Command MBXCommand = new Command(“Get-Mailbox”);
pipeLine.Commands.Add(MBXCommand);
Collection < PSObject > cmdResult = pipeLine.Invoke();

 To add multiple commands to the pipeline, a new command object must be created for each command
and then added to the pipeline. In the following example the MBXCommand object is created for the
Get-Mailbox command and then added to the pipeline. After that the FTCommand object is created for
the Format-Table command before it is added to the pipeline:

Runspace EMSRunSpace = RunspaceFactory.CreateRunspace();
EMSRunSpace.Open();
Pipeline pipeLine = EMSRunSpace.CreatePipeline();
Command MBXCommand = new Command(“Get-Mailbox”);
pipeLine.Commands.Add(MBXCommand);
Command FTCommand = new Command(“Format-Table”);
pipeLine.Commands.Add(FTCommand);
Collection < PSObject > cmdResult = pipeLine.Invoke();

 This example takes the results of the Get-Mailbox command and pipelines it to the Format-Table com-
mand. But what if you wanted to select only mailboxes that are hosted on the MB001 server? You need to

c17.indd 489c17.indd 489 12/17/07 4:06:51 PM12/17/07 4:06:51 PM

Part IV: Automating Administration

490

add a parameter to the Get-Mailbox command. For instance, if you need to run Get-Mailbox -Server
MB001 , you need to use the pipeline.command.add method to add in Get-Mailbox as the command
that needs to run and then use the command.Parameters.Add method to add Server and MB001 to
modify that command. The CommandParameter class requires only a name in the case of a switch param-
eter and a name and a value for parameters that have additional values:

Runspace EMSRunSpace = RunspaceFactory.CreateRunspace();
EMSRunSpace.Open();
Pipeline pipeLine = EMSRunSpace.CreatePipeline();
Command MBXCommand = new Command(“Get-Mailbox”);
pipeLine.Commands.Add(MBXCommand);

CommandParameter verbParam = new CommandParameter(“Server”,
 “MB001”);
EMSCmd.Parameters.Add(verbParam);

Command FTCommand = new Command(“Format-Table”);
pipeLine.Commands.Add(FTCommand);
Collection < PSObject > cmdResult = pipeLine.Invoke();

 When adding commands to a pipeline this way, take care to ensure that the command is being passed
correctly typed data. Most of the cmdlets accept standard Int64, string, or byte quantified size for their
parameter values. However, a number of Exchange cmdlets have the filterscript parameter and
this parameter requires a value typed as a ScriptBlock and will not accept a string value. Creating a
 ScriptBlock value isn ’ t as straightforward as you might think. To create a script block you must create
a new RunspaceInvoke object and then cast the script as a ScriptBlock type. The code looks some-
thing like this:

RunspaceInvoke rsi = new RunspaceInvoke();
ScriptBlock sBlock =
 (ScriptBlock)rsi.Invoke(“{$_.DisplayName -match
 \”Br\”}”)[0].BaseObject;

 To create a ScriptBlock you cannot use a RunspaceFactory object like you are using to pipeline your
commands. You must use an instance of RunspaceInvoke to create a ScriptBlock. The RunspaceInvoke
.Invoke method returns a PSObject collection of the filterscript string you passed it. In the example
only one item in the collection is passed back to you. You access this collection entry by specifying its
index in the collection [0] . At this point you are looking at a PSObject and because the PSObject cannot
be cast to a ScriptBlock object, another solution is needed. It just happens that the PSObject class has a
 BaseObject attribute, which is of type Object . An instance of type Object can be cast to an instance of
type ScriptBlock. Now that the ScriptBlock has been properly cast you can use this in the pipeline as the
value for the filterscript parameter, as you can see in the following code sample:

RunspaceConfiguration EMSConfig =
 RunspaceConfiguration.Create();
PSSnapInException snapInException = null;
PSSnapInInfo info =
 EMSConfig.AddPSSnapIn(“Microsoft.Exchange.Management.PowerShell.Admin”,
 out snapInException);
Runspace EMSRunSpace =
 RunspaceFactory.CreateRunspace(EMSConfig);
EMSRunSpace.Open();

c17.indd 490c17.indd 490 12/17/07 4:06:51 PM12/17/07 4:06:51 PM

491

Chapter 17: Using the .NET Framework

Pipeline pipeLine = EMSRunSpace.CreatePipeline();

Collection < PSObject > cmdData = pipeLine.Invoke();

foreach (PSObject cmdlet in cmdData)
 {

 string cmdletnm =
 cmdlet.Properties[“Name”].Value.ToString();
 TextBox1.Text += cmdletnm.ToString() + “\r\n”;
 }

pipeLine=null;

 To see the data returned from the PowerShell runspace, add a text box control named TextBox1 and a
button control that runs the preceding code to Default.aspx of a test web site and you should get similar
results to those in Figure 17 - 2 .

Figure 17-2

c17.indd 491c17.indd 491 12/17/07 4:06:52 PM12/17/07 4:06:52 PM

Part IV: Automating Administration

492

 You can take this example a little further and allow the user to select a number of properties to filter by.
As shown in Figure 17 - 3 , add a drop - down list named DropDownList1 to provide a list of properties to
filter. Then add a text box named TextBox2 so that the user can type the filter criteria. The drop - down list
control should be pre - populated with values such as DisplayName , ServerName , IsMailboxEnabled ,
and Database .

 After you add the controls, you need to modify the code used to generate the ScriptBlock so that it
will take input from the drop - down list and text box. The code would look something like this:

ScriptBlock sBlock = (ScriptBlock)rsi.Invoke(“{$_.” +
 DropDownList1.SelectedValue + “ -match \”” +
 TextBox2.Text. Replace(“\\”,”\\\\”) + “\”}”)[0].BaseObject;

 The Replace method is used to allow a user to specify the full database path which includes the “ \ ”
character.; however, with any software development care needs to be taken to ensure that users are
unable to input malicious code into the text box. This should be done with proper bounds checking and
security best practices. The results of a search from the new page would look like Figure 17 - 4 .

Figure 17-3

c17.indd 492c17.indd 492 12/17/07 4:06:52 PM12/17/07 4:06:52 PM

493

Chapter 17: Using the .NET Framework

 Several other options can be added to provide information to non - technical users via a website. For
example, this page could return a table of the mailboxes, server name, and the mailbox store. To do this
you can drop a GridView control onto the page to replace the TextBox control. To use the returned data,
a dataset is created and each object from the pipeline is added the dataset.

RunspaceConfiguration EMSConfig =
 RunspaceConfiguration.Create();
PSSnapInException snapInException = null;
PSSnapInInfo info =
 EMSConfig.AddPSSnapIn(“Microsoft.Exchange.Management.PowerShell
 .Admin”, out snapInException);

Figure 17-4

(continued)

c17.indd 493c17.indd 493 12/17/07 4:06:52 PM12/17/07 4:06:52 PM

Part IV: Automating Administration

494

Runspace EMSRunSpace =
 RunspaceFactory.CreateRunspace(EMSConfig);
EMSRunSpace.Open();

Pipeline pipeLine = EMSRunSpace.CreatePipeline();
Command EMSCmd = new Command(“Get-Mailbox”);
pipeLine.Commands.Add(EMSCmd);
CommandParameter verbParam = new CommandParameter(“Server”, “MB001”);
EMSCmd.Parameters.Add(verbParam);
Command EMSCmd2 = new Command(“Where-Object”);
pipeLine.Commands.Add(EMSCmd2);
RunspaceInvoke rsi = new RunspaceInvoke();
ScriptBlock sBlock = (ScriptBlock)rsi.Invoke(“{$_.” +
 DropDownList1.SelectedValue + “ -match \”” +
 TextBox2.Text.Replace(“\\”,”\\\\”) + “\”}”)[0].BaseObject;

CommandParameter verbParam2 = new
 CommandParameter(“FilterScript”, sBlock);

EMSCmd2.Parameters.Add(verbParam2);

Collection < PSObject > cmdData = pipeLine.Invoke();

DataSet ds = new DataSet();

 ds.Tables.Add(“Pipeline”);
 ds.Tables[“Pipeline”].Columns.Add(“DisplayName”);
 ds.Tables[“Pipeline”].Columns.Add(“ServerName”);
 ds.Tables[“Pipeline”].Columns.Add(“Database”);

foreach (PSObject cmdlet in cmdData)
{

 ds.Tables[“Pipeline”].Rows.Add(cmdlet.Properties[“Name”].Value.ToString(),cmdlet
 .Properties[“ServerName”].Value.ToString(),cmdlet.Properties[“Database”].Value
 .ToString());

}

GridView1.DataSource = ds.Tables[“Pipeline”];
GridView1.DataBind();
pipeLine = null;

 The results of running this modified page are shown in Figure 17 - 5 .

(continued)

c17.indd 494c17.indd 494 12/17/07 4:06:53 PM12/17/07 4:06:53 PM

495

Chapter 17: Using the .NET Framework

Figure 17-5

 In this example, we haven ’ t made any formatting changes to the table or any attempt to provide an esthet-
ically pleasing interface. You can, however, see how simple it is to work with the data in PowerShell. With
minimal effort you can create runspace and pipeline objects that can be used to retrieve data.

 Solving Problems with PowerShell
and the . NET Framework

 After you understand the basics of Exchange Server 2007, Windows PowerShell, and how to work with
them from the .NET Framework, a multitude of uses open up. Even though PowerShell scripts can be
created for administrators to use, a web interface can be created for running these commands and to
hold business logic around these tasks.

c17.indd 495c17.indd 495 12/17/07 4:06:53 PM12/17/07 4:06:53 PM

Part IV: Automating Administration

496

 One example might be creating a web - based tool to use in the case of a disaster recovery scenario. One of
the tasks in a disaster recovery scenario might be to failover the mailboxes to the standby continuous
replication (SCR) target database. Each of the manual steps can be automated by creating business logic
and creating code.

 Another example of adding business logic with the .NET Framework is allowing an administrator to
request a size increase for a mailbox, but before applying the changes a confirmation request can be sent
to the user ’ s supervisor to approve the quota increase.

 Summary
 The only programmatic management interface for Exchange Server 2007 is through PowerShell. A case
in point is that the Exchange Management Console relies on the PowerShell cmdlets to be able to manage
Exchange. This makes it important when creating complex and interconnected business processes to be
able to leverage the .NET Framework.

 This chapter covered creating a PowerShell runspace and modifying the configuration of that runspace
to be able to access the Exchange management snap - in. Then an example was used to show how to
 create a pipeline and add commands to that pipeline in a number of ways.

c17.indd 496c17.indd 496 12/17/07 4:06:53 PM12/17/07 4:06:53 PM

In
de

x

Symbols and Numbers
(pound), for adding comments to profiles,

53
$ (dollar sign), in variable syntax, 48
* (asterisk), for wildcards, 11–12
.. (double period), for parent of current

location, 42
{ } (curly brackets), in function definition, 50
| (pipeline operator). See pipelines
: (colon), in drive syntax, 44
- (dash or hyphen), in parameter syntax, 10
. (period), for current location, 42
-? pseudo parameter, for help information, 19
32-bit processing

Exchange hardware requirements, 66
Exchange software requirements, 68

64-bit processing
Exchange hardware requirements, 66
Exchange software requirements, 68

A
AA (AutoAttendants), in UM, 288–290
about_, for getting help, 21
accepted domains

Edge Transport, 250
Hub Transport configuration, 255
Hub Transport policies, 214

access rights, public folders, 146
Active Directory. See AD (Active Directory)
Active Directory Application Mode. See

ADAM (Active Directory Application
Mode)

Active Directory Lightweight Directory
Services (AD LDS), 240

active/passive configuration, of mailboxes,
363. See also clustering; continous
replication

ActiveSync. See EAS (Exchange ActiveSync)
AD (Active Directory)

CMS AD object created for CCR, 343–344
domain preparation and, 71
object properties, 165
site-based routing, 300–301

AD LDS (Active Directory Lightweight
Directory Services), 240

AD sites
dedicated Exchange sites, 314
defined, 300
Exchange domain requirements and, 70
Exchange uses for site membership,

300–301
as hub sites, 316–317
membership, 313–314
routing based on, 212–213, 300–301
site link costs, 314–316

ADAM (Active Directory Application Mode)
Edge Transport server and, 237, 238
Setup.com, 75

/AdamLdapPort, Setup.com, 75
/AdamSslPort, Setup.com, 75
Add-ADPermission cmdlet, 160
Add-DistributionGroupMember cmdlet,

129, 447
Add-PublicFolderAdministrative-

Permission cmdlet, 147–148
Add-PublicFolderClientPermission

cmdlet, 146, 148, 462
AddReplicaToPFRecursive.ps1, 158
Address Rewrite agent, Edge Transport

server, 266
/AddUmLanguagePack, Setup.com, 75
administration, public folders and, 149–150
administrative permissions, public folders,

146–148
administrative scripts, 425–464

applying default settings (standards), 469
exporting data, 468–469

Index

bindex.indd 497bindex.indd 497 12/17/07 4:09:44 PM12/17/07 4:09:44 PM

498

administrative scripts (continued)
getting database file size, 480–482
group assignments for new users. See user

accounts, group assignments
load balancing user accounts across mailbox

servers. See user accounts, load balancing
across mailbox servers

mailbox-enabled user accounts. See mailbox-
enabled user accounts

overview of, 425
public folder creation. See public folders, for

new users
reading in files, 465–467
reporting mailbox size, 475–480
reporting online defragmentation and

backups, 471–475
sending e-mail, 469
simple monitoring, 483–484
summary, 484

$AdminSessionADSettings variable, 85–86
ADSI Edit

granting access to top-level folders, 149
viewing AD object properties, 165

/af, Setup.com, 74
Agent-generated messages, Microsoft

Exchange Recipient, 101
aliases

cmdlets for, 23
definitions, 49–50
fl alias for Format-List, 47
PowerShell navigation and, 41–42
UM accounts and, 277
viewing list of, 49

All Users profile, 52
and operator, in multiple test conditions, 25
/AnswerFile, Setup.com, 74
Anti-Spam agent, Edge Transport server,

266–267. See also spam prevention
application data, cmdlets for gathering, 411
ASP.NET web application project, 486–487
authentication, send connectors, 210
AutoAttendants (AA), in UM, 288–290
Autodiscover

CAS (Client Access Server), 177–180
functions of, 399
Outlook 2007 profiles created with, 163

automatic completion, for command entry,
21–23

automatic variables, 49
automation, benefits of Exchange

Management Shell, 34
AutoSize parameter, Format-List, 47
Availability Service, CAS providing, 163

B
back pressure feature, Hub Transport,

199–200
backoff routines, in Exchange Server 2007

routing, 305–307
bandwidth, fan-out in routing and, 307–308
Booleans (true or false), 10
bridgehead servers, Exchange Server

2000/2003, 191
bulk operations

benefits of Exchange Management Shell vs.
Console, 34

creating mailboxes, 131–132
enabling existing users, 135–136
modification of mailbox attributes, 136
overview of, 130
reconnection of mailboxes, 136–137
templates for mailboxes, 133–134

bulk-newmailbox.v1.ps1
creating mailbox-enabled user accounts,

432–434
examining script, 435–441
running script, 441–443

bulk-newmailbox.v2.ps1
examining script, 446–448
overview of, 443–444
running script, 448–449
script contents, 444–445

bulk-newmailbox.v3.ps1
examining script, 450–453
running script, 454

C
C#

PowerShell similarity with, 5
running PowerShell from, 485–486

Cached Mode, CAS disabling Outlook modes,
165–166

administrative scripts (continued)

bindex.indd 498bindex.indd 498 12/17/07 4:09:45 PM12/17/07 4:09:45 PM

499

In
de

x

CAS (Client Access Server), 163–189
AD sites and, 301
Autodiscover feature, 177–180
certificate types, 170–171
copying certificates, 176–177
disabling Outlook modes, 165–166
disabling Outlook versions, 166–167
enabling certificates, 176
enabling POP3 and IMAP4, 167–170
enabling/disabling client-access attributes,

120–121
Exchange 2007 software requirements, 69
generating certificates, 172–174
importing certificates, 175
LinkAccess, 186–189
obtaining certificates, 174
Offline Address Book, 184–186
order of deploying Exchange roles, 77, 79
Outlook Anywhere, 183–184
overview of, 163
proxies and redirection for client access,

181–183
summary, 190
user settings, 164–165

CAS (Client Access Server), troubleshooting,
399–403

overview of, 399
Test-ActiveSyncConnectivity cmdlet,

400–402
Test-OutlookWebServices cmdlet,

399–400
Test-OwaConnectivity cmdlet,

402–403
Test-WebServicesConnectivity

cmdlet, 404
case sensitivity, PowerShell commands, 9
casting, 488
categorization, message

Edge Transport, 238
Hub Transport, 194

CCR (Clustered Continuous Replication)
cluster, 338–339
cluster heartbeat, 341–342
cluster service account, 336
clustered mailbox server AD object, 343–344
failback, 360
failover, 354–357
FSW (file share witness), 339–340

mailbox server role, installing on primary
node, 344–345

mailbox server role, installing on secondary
node, 345

network interfaces, 342
overview of, 329–330
reasons for using, 330
SCCs compared with, 330
seeding process, 347–349
steps in installation, 336
structure of, 329
Windows 2003 R2 SP2 installation and, 337

certificates, CAS
copying, 176–177
enabling, 176
generating, 172–174
importing, 175
obtaining, 174
overview of, 170
request process, 171
types of, 171

classes
defined, 487
PowerShell objects, 5

Clean-MailboxDatabase cmdlet, 224
Clean-up Agent, Exchange Server 2003, 224
CLI (Command Line Interface)

history of shells, 4
limitations of shells, 5
PowerShell commands corresponding to

common commands, 42–43
Client Access Server. See CAS (Client Access

Server)
client permissions, public folders, 145–146
cluster heartbeat

cluster nodes using to ensure availability,
329–330

configuring in CCR, 341–342
cluster service account

creating for CCR, 336, 343–344
creating for MSCS, 366–367

Clustered Continuous Replication. See CCR
(Clustered Continuous Replication)

Clustered Mailbox Server. See CMS (Clustered
Mailbox Server)

cluster.exe
cluster cmdlets compared with, 383
cluster installation for MSCS, 375–380

cluster.exe

bindex.indd 499bindex.indd 499 12/17/07 4:09:45 PM12/17/07 4:09:45 PM

500

cluster.exe (continued)
configuring two node cluster with, 338

clustering. See also continous replication
CCR. See CCR (Clustered Continuous

Replication)
fault tolerance and, 327
history of, 328
LCR. See LCR (Local Continuous Replication)
monitoring cluster status, 349–350
resource management, 383–385
SCCs. See SCCs (Single Copy Clusters)
SCR. See LCR (Local Continuous Replication)
switches for clustered installs, 76

clusters
creating for CCR, 338–339
installing for MSCS, 375–380

cmd.exe
automatic completion, 22
shell history and, 4

cmdlets
aliases, 23
finding with Get-Command, 17–19
finding with Get-Help, 15–17
managing services, 56
optional and required parameters, 13–14
overview of, 8–9
parameter details for, 20–21
pipelines for passing data between, 23–24
sets of cmdlets in Exchange Management

Shell, 38–41
syntax details for, 20
tab expansion feature for entering, 21–23
verb-noun pair in cmdlet names, 9–10

CMS (Clustered Mailbox Server)
AD object created for, 343–344
CCR and, 329, 336
in Exchange clustering, 328
installing Exchange on SCCs, 380–381
installing mailbox server role on primary

node, 344–345
installing mailbox server role on secondary

node, 345
monitoring cluster status, 349–350
setup switches, 76

coexistence routing, 317–318, 322–325
Command Line Interface. See CLI (Command

Line Interface)
command-line interface, 6–8

commands, PowerShell. See cmdlets
CommandType parameter, Get-Command

cmdlet, 18
comments

added to script, 432
adding to profiles, 53

comparison operators, 24
complex deployment, Exchange Server 2007,

80–81
Component parameter, Get-Help cmdlet,

38–40
composition, pipelines and, 23
conditionals, testing variable values, 436–437
Connect-Mailbox cmdlet

modifying resource mailboxes, 123
reconnecting disconnected mailbox, 224–225

connectors
creating /modifying, 201–202
Exchange Server 2000/2003, 191
foreign connectors, 212
linking send and receive connectors,

210–211
New-ReceiveConnector cmdlet, 202–203
New-SendConnector cmdlet, 203
receive connectors, 203–207
routing group connectors, 208–210
send connectors, 208–210

Content Filter agent, 268–270
continuous replication

CCR (Clustered Continuous Replication). See
CCR (Clustered Continuous Replication)

failback, 359
failover, 353
installing, 334
LCR (Local Continuous Replication). See LCR

(Local Continuous Replication)
monitoring cluster status, 349–350
monitoring cmdlets, 349
monitoring replication status, 350–352
overview of, 327–328
Performance Monitor, 352
SCR (Standby Continuous Replication). See

SCR (Standby Continuous Replication)
seeding, 346–349
summary, 361

CreatePipeline method, 488–489
CSV (comma-separated value) files

in bulk-newmailbox.v1.ps1, 435–437

cluster.exe (continued)

bindex.indd 500bindex.indd 500 12/17/07 4:09:46 PM12/17/07 4:09:46 PM

501

In
de

x

creating bulk mailboxes, 131–132
creating simple script based on, 426
exporting data as, 468–469
Import-Csv cmdlet, 430
reading in files and, 466

Current User profile, 52

D
DAS (direct attached storage), 330
data

replication, 153–155
script for exporting, 468–469

data types
casting and, 488
finding, 25–26
parameter input values, 10

database, public folders
creating, 140–141
getting/setting database information, 142–144
overview of, 140
removing, 142–144

databases
LCR, 334–335
mailbox store. See mailbox store (database)
recovery storage groups. See RSG (Recovery

Storage Groups)
script for getting database file size, 480–482
storage groups. See storage groups

date and time, cmdlets for managing, 483
delayed fanout, in Exchange Server 2007

routing, 307–308
Delivery Status Notifications (DSNs), 101
delivery type, routing, 303
denial of service attacks, 235
deploying Exchange Server 2007, 65–82

complex deployment, 80–81
disaster recovery, 76–77
domain preparation, 70–71
domain requirements, 69–70
hardware requirements, 66–67
overview of, 65–66
sequence for installing server roles, 77
setup switches for clustered installs, 76
setup switches for server installation, 72–76
single server deployment, 78
software requirements, 68–69

standard deployment, 78–80
summary, 81–82

direct attached storage (DAS), 330
Disable-Mailbox cmdlet

modifying resource mailboxes, 123
removing Exchange mailbox, 223

Disable-MailContact cmdlet, 127
Disable-UMIPGateway cmdlet, 292
Disable-UMServer cmdlet, 291
disaster recovery

Exchange deployment and, 76–77
web-based tool for, 496

disk space, Exchange hardware requirements,
67

DISKPART.EXE, 372
Dismount-Database cmdlet, 353
Distinguished Name (DN)

granting access to top-level folders and, 149
UM accounts and, 277

distribution groups
adding user accounts to, 443
dynamic. See dynamic distribution groups
Get-DistributionGroup cmdlet, 91–92
universal, 102

DN (Distinguished Name)
granting access to top-level folders and, 149
UM accounts and, 277

DNS
creating DNS cluster record in MSCS install,

367–369
Edge Transport server configuration, 245, 250
Hub Transport server configuration, 197–199,

253, 255
resolution of MX records, 237

DNS Delivery, routing, 303
domain controllers

Exchange domain requirements, 70
setup switches for, 72

/DomainController or /dc, Setup.com,
74

domains, Exchange 2007
level function, 70
preparation, 70–71
requirements, 69–70

/DoNotStartTransport, Setup.com, 74
drives

changing from current location to new
drive, 44

drives

bindex.indd 501bindex.indd 501 12/17/07 4:09:46 PM12/17/07 4:09:46 PM

502

drives (continued)
hives exposed as, 57
listing available, 43

DSNs (Delivery Status Notifications), 101
dynamic distribution groups

creating, 129–130
Get-DynamicDistributionGroup

cmdlet, 92–93
viewing, 103–105

E
EAS (Exchange ActiveSync)

client access to, 163
enabling /disabling client-access attributes,

120–121
Exchange 2007 access methods, 165
SSL and, 170
Test-ActiveSyncConnectivity cmdlet,

400–402
.edb file, 219
edge cloning, Edge Transport server, 263
Edge Rules agent, 266
Edge services, Exchange 2007 software

requirements, 69
edge subscription

to AD site in Exchange organization, 237
configuring Edge Transport servers,

250–253
exporting, 250
importing, 252, 257
overview of, 239
verifying configuration of Edge Transport

servers, 257
Edge Transport server, 235–271

ADAM and, 238
Address Rewrite agent, 266
Anti-Spam agent, 266–267
back pressure feature, 199–200
cmdlets for, 236
configuring, 241–242
configuring with edge subscription or

EdgeSync, 250–253
configuring without edge subscription or

EdgeSync, 245–250
content filtering, 268–270
edge cloning, 263

Edge Rules agent, 266
edge subscription and synchronization, 239
Enable-TransportAgent cmdlet,

264–265
Get-TransportAgent cmdlet, 264
Hub Transport server prepared for EdgeSync,

253–257
IP Allow List, 267
IP Allow List Provider, 267
IP Block List, 268
IP Block List Provider, 268
message categorization, 238
new features in Exchange 2007 SP1,

240–241
New-EdgeSubscription cmdlet,

242–243
order of deploying Exchange roles, 77
overview of, 235, 237
Recipient filtering, 271
Remove-EdgeSubscription cmdlet, 243
sender filtering, 270
Sender Reputation, 271
SenderID, 270
Set-TransportAgent cmdlet, 264
Start-EdgeSubscription cmdlet, 243
summary, 271
Test-EdgeSubscription cmdlet, 244
transport agents, 263
verifying configuration, 257–262
X-MS-Exchange-Organization-SenderIdResult:

PASSJunk E-Mail filter, 268–270
EdgeSync

configuring Edge Transport server, 250–253
ESRA (Exchange Sync Replication Account)

and, 250–251
Hub Transport server prepared for, 253–257
synchronization provided by, 239
Test-EdgeSynchronization cmdlet,

409–410
verifying configuration of Edge Transport

servers, 257
else statement, 446–447
elseif statement, 451
e-mail

as business critical application, 327
junk mail filtering, 268–270
policies for e-mail addresses, 214
public folders enabled to receive, 158

drives (continued)

bindex.indd 502bindex.indd 502 12/17/07 4:09:46 PM12/17/07 4:09:46 PM

503

In
de

x

restoring mail, 228–231
script for sending, 469
UCE (Unsolicited Commercial E-mail), 235

E-mail AutoConfiguration, Outlook 2007, 179
EMC (Exchange Management Console)

cmdlets for graphical management, 485
Exchange Management Shell vs., 34–36
layout of, 37–38
mailbox management, 222
message tracking, 310
New Mailbox Wizard, 115–116
Organization Configuration node, 37
public folder database created with, 140
Recipient Configuration node, 37, 93–94
recovery storage group management, 225
Server Configuration node, 37
storage groups created with, 218
Toolbox node, 38

Enable-DatabaseCopy cmdlet, 334
/EnableErrorReporting, Setup.com, 74
Enable-ExchangeCertificate cmdlet,

176
/EnableLegacyOutlook, Setup.com, 74
Enable-Mailbox cmdlet

bulk-enabling existing users, 135–136
creating resource mailboxes, 123
enabling existing user or IntOrgPerson

object, 108–109
Enable-MailContact cmdlet, 127
Enable-MailPublicFolder cmdlet, 158
Enable-OutlookAnywhere cmdlet,

183–184
Enable-StorageGroupCopy cmdlet, 335,

346
Enable-TransportAgent cmdlet, 264–265
Enable-UMAutoAttendant cmdlet, 289
Enable-UMMailbox cmdlet, 276–277
eq (equals), comparison operators, 24
equipment mailboxes, creating, 122
error checking, adding to scripts, 432
error reporting
bulk-newmailbox.v1.ps1, 441–443
bulk-newmailbox.v2.ps1, 446–448
bulk-newmailbox.v3.ps1, 452
during server installation, 74

errors, Exchange Server 2007 routing,
308–309

ESE (Extensible Storage Engine), 66, 238

ESRA (Exchange Sync Replication Account),
250–251

event logs
Get-EventLog cmdlet, 412–414
Get-EventLogLevel cmdlet, 420–422
querying remote, 471
in Windows OS, 60–63

EVS (Exchange Virtual Server), 336
Exchange 5.5 servers, Exchange 2007 domain

requirements and, 70
Exchange Active Directory Topology service,

300
Exchange Install Domain Servers Group, 105
Exchange Management Console. See EMC

(Exchange Management Console)
Exchange Management Shell, 33–64

advantages of, 34
aliases, 49–50
cmdlet sets, 38–41
event logs in Windows OS and, 60–63
Exchange Management Console compared

with, 34–36
as extension of PowerShell, 6–8
functions, 50–52
navigating PowerShell, 41–43
output, 45–47
overview of, 33
PowerShell drives, 43–44
preparing, 30
processes, controlling in Windows OS, 54–55
profiles, 52–54
Registry in Windows OS, 57–60
script creation, 425–426
services, controlling in Windows OS, 55–56
summary, 64
tasks, 8
variables, 48–49
verb names, 9–10

Exchange Organization, 70
Exchange Organization Administrators Group,

105
Exchange Public Folder Administrators, 149
Exchange Recipient, 101
Exchange Recipient Administrators Group, 105
Exchange Security Groups, 104–105
Exchange Server 2000/2003

bridgehead servers and connectors, 191
CAS (Client Access Server) compared with, 163

Exchange Server 2000/2003

bindex.indd 503bindex.indd 503 12/17/07 4:09:47 PM12/17/07 4:09:47 PM

504

Exchange Server 2000/2003 (continued)
Clean-up Agent in Exchange 2003, 224
coexistence Exchange 2003 with Exchange

2007, 317–318
dedicated AD sites for, 314
Exchange 2007 domain requirements

and, 70
link state in Exchange 2003, 318–319
relay restrictions and submit permissions,

206–207
routing, 297
routing compared with Exchange 2007, 299
routing difference between Exchange

versions, 299
Routing Group Connectors and, 210

Exchange Server 2007
access methods, 165
Autodiscover, 177–180
CAS proxy and redirection, 181–183
connector types, 201–202
deploying. See deploying Exchange Server

2007
deployment and administration with

PowerShell, 3
Exchange Public Folder Administrators role,

149
Hub Transport role, 191
installing on SCCs (Single Copy Clusters),

380–383
new features in Exchange 2007 SP1,

240–241
relay restrictions and submit permissions,

206–207
routing. See routing, Exchange Server 2007
routing difference between Exchange

versions, 299
Routing Group Connectors and, 210
troubleshooting. See troubleshooting

Exchange 2007
Exchange Servers Group, 104
Exchange Sync Replication Account (ESRA),

250–251
Exchange variables, 49
Exchange View-Only Administrators Group,

104–105
Exchange Virtual Server (EVS), 336
Exchange Web Services, CAS providing, 163
Exchange2003Interop Group, 104

execution policies, PowerShell scripts, 30
Export-Csv cmdlet, 468–469
exporting data, 468–469
Export-Mailbox cmdlet, 111–112
Extensible Storage Engine (ESE), 66, 238
ExternalScript command elements, 18

F
failback

CCR, 360
cmdlets for, 359
LCR, 359–360
SCR, 360–361

failover
CCR, 354–357
cmdlets for, 353
LCR, 353–354
parameters in CCR, 341–342
SCR, 357–359

fan-out in routing, 307–308
fault tolerance, cluster designs and, 327
file share witness (FSW)

creating/assigning for CCR, 339–340
overview of, 329–330

file system
Exchange 2007 hardware requirements, 67
navigating PowerShell, 41

FilePath parameter, 47
files

script for getting database file size,
480–482

script for reading in files, 465–467
filters

event logs, 62
objects, 24–25

filters, Edge Transport
content filtering, 268–270
recipient filtering, 271
sender filtering, 270

firewalls, Outlook Anywhere and, 183
fl alias, 47
foreach loops
bulk-newmailbox.v2.ps1, 446–448
bulk-newmailbox.v3.ps1, 453
progress bar and, 440–441

foreign connectors, Hub Transport, 212

Exchange Server 2000/2003 (continued)

bindex.indd 504bindex.indd 504 12/17/07 4:09:47 PM12/17/07 4:09:47 PM

505

In
de

x

forest level function, Exchange 2007 domain
requirements, 70

Format-List
event messages, 61
output list, 27, 47
process details, 54
send connectors, 209
service details, 56

Format-Table
changing column labels, 478
event messages, 61
output tables, 28–29, 46–47
Recipient types, 94–96

FSW (file share witness)
creating/assigning for CCR, 339–340
overview of, 329–330

Function keyword, 50–51
Functionality parameter, Get-Help

cmdlet, 38–39, 41
functions, PowerShell, 50–52

G
GAL (Global Address List), 100
Get verb

for gathering system and application data,
411

output and, 26, 45
verb names, 9

Get-ADPermission cmdlet, 206
Get-ADSite cmdlet, 316–317
Get-ADSiteLink cmdlet, 315–316
Get-Alias cmdlet, 23, 50
Get-CASMailbox cmdlet, 167
Get-ChildItem cmdlet, 57
Get-ClusteredMailboxServer-

Status cmdlet, 349, 383, 385
Get-Command cmdlet, 17–19
Get-Content cmdlet, 466, 470
Get-Date cmdlet, 483
Get-DistributionGroup cmdlet

querying distribution groups, 91–92
viewing mail-enabled groups, 102–103

Get-DynamicDistributionGroup cmdlet
querying dynamic distribution groups, 92–93
viewing dynamic distribution groups, 104,

130

Get-EventLog cmdlet
accessing event logs on local server, 471
controlling diagnostic logging levels, 62–63
filtering results obtained with, 472–473
troubleshooting Exchange 2007, 412–414
viewing event logs, 60–62

Get-EventLogLevel cmdlet, 420–422
Get-ExchangeServer cmdlet, 391–392
Get-Group cmdlet

querying existing groups, 90–91
viewing mail-enabled groups, 102–103

Get-Help cmdlet
Component parameter, 38–40
finding cmdlets with, 15–17
finding comparison operators, 24
Functionality parameter, 38–39, 41
parameter details, 20–21
Role parameter, 16–17, 38–39
using help information effectively, 19–20

Get-ItemProperty cmdlet, 59
Get-Mailbox cmdlet

adding parameters to, 489–490
gathering mailbox-enabled users, 463
Identity parameter used as positional

parameter, 14
ResultSize parameter, 12
user settings for client access, 165
viewing mailboxes and attributes, 88–89

Get-MailboxDatabase cmdlet
checking status of LCR database, 335
getting information for mailbox database, 460

Get-MailboxStatistics cmdlet
bulk reconnection of mailboxes, 136–137
finding disconnected mailboxes, 224
reporting mailbox size, 475–476

Get-MailContact cmdlet, 89–90, 100
Get-Message cmdlet, 414–417
Get-MessageTrackingLog cmdlet,

310–313, 417–420
Get-NetworkConnectionInfo cmdlet, 199
Get-Process cmdlet, 54
Get-PSDrive cmdlet, 43–44
Get-PublicFolder cmdlet

creating public folders and, 152
folder replication and, 154
returning public folder object with, 460

Get-PublicFolderAdministrative-
Permission cmdlet, 147

Get-PublicFolderAdministrativePermission cmdlet

bindex.indd 505bindex.indd 505 12/17/07 4:09:48 PM12/17/07 4:09:48 PM

506

Get-PublicFolderDatabase cmdlet,
142–143, 461

Get-PublicFolderStatistics cmdlet,
158–160

Get-Queue cmdlet, 194
Get-ReceiveConnector cmdlet, 204, 206
Get-Recipient cmdlet

displaying recipients with, 94
returning Recipient objects with, 87–88
viewing dynamic distribution groups, 104
viewing mail contacts in AD forest, 100
viewing mail-enabled groups, 102–103

Get-RoutingGroupConnector cmdlet, 210
Get-Service cmdlet

enabling POP3 and IMAP4, 167–168
managing services, 55
parameters for input values, 12

Get-StorageGroup cmdlet, 226
Get-StorageGroupCopyStatus cmdlet

seeding and, 349
snapshot of current replication status, 350

Get-TransportAgent cmdlet, 264
Get-TransportPipeline cmdlet, 196
Get-TransportServer cmdlet, 197, 305
Get-UM cmdlets

for information retrieval, 284–286
reviewing UM configuration, 277–278

Get-UMActiveCalls cmdlet, 285
Get-UMAutoAttendant cmdlet, 285
Get-UMDialPlan cmdlet, 277, 285
Get-UMHuntGroup cmdlet, 285
Get-UMIPGateway cmdlet, 278, 285
Get-UMMailbox cmdlet, 286
Get-UMMailboxPIN cmdlet, 286
Get-UMMailboxPolicy cmdlet, 278
Get-UMServer cmdlet, 278, 286
Get-UMVirtualDirectory cmdlet, 286
Get-User cmdlet, 25, 136
Get-WMIObject cmdlet, 471
Global Address List (GAL), 100
Global Catalog Servers, 70
Graphical User Interfaces (GUIs)

history of shells and, 4
vs. shells, 4

groups
assignments for new users. See user

accounts, group assignments

cmdlets for identifying group object types,
86–96

creating/modifying, 128–129
dynamic distribution groups, 103–105
Get-Group cmdlet, 90–91
nonuniversal groups, 103
overview of, 101
universal distribution groups, 102
universal security groups, 102–103
user account assignments. See user

accounts, group assignments
gt (greater than), comparison operator, 24
GUIDs, 277
GUIs (Graphical User Interfaces)

history of shells and, 4
vs. shells, 4

H
hardware requirements

Exchange 2007, 66–67
MSCS (Microsoft Cluster Server), 364

HeartBeatLostInterfaceTicks
parameter, failover and, 341

HeartBeatLostNodeTicks parameter,
failover and, 341–342

help
effective use of help information, 19–20
Get-Help cmdlet. See Get-Help cmdlet
help files as supplement to cmdlet help, 21

Help function, based on Get-Help, 19
hierarchy, of public folders, 155–156
high availability

CAS Availability Service, 163
continuous replication and, 328
folder replication and, 153
Mailbox server role and, 217

HKEY_CURRENT_USER, 57
HKEY_LOCAL_MACHINE, 57
hop selection process, in Exchange 2007

routing, 302–304
hub sites

AD sites enabled as, 316–317
routing and, 304–305

Hub Transport server, 191–216
accepted domain policies, 214

Get-PublicFolderDatabase cmdlet

bindex.indd 506bindex.indd 506 12/17/07 4:09:48 PM12/17/07 4:09:48 PM

507

In
de

x

AD IP site links and, 212–213
AD sites and, 300
back pressure feature, 199–200
Categorizer, 194
configuring, 197
connectors, creating/modifying, 201–202
connectors, linking, 210–211
DNS configuration, 197–199
EdgeSync and, 253–257
e-mail address policies, 214
foreign connectors, configuring, 212
Local (MAPI) Delivery, 194
mail routing and, 299–300
New-ReceiveConnector cmdlet, 202–203
New-SendConnector cmdlet, 203
order of deploying Exchange roles, 77
overview of, 191
policies, 213–214
priority queueing, 200
receive connectors, configuring, 203–206
relay restrictions and submit permissions,

206–207
routing group connectors, configuring, 212
send connectors, configuring, 208–210
server limits, 201
SMTP Receive, 192
SMTP Send/Remote Delivery, 194–197
Submission Queue, 193–194
summary, 214–215
transport pipeline, 192

I
Identity parameter

as positional parameter, 14
as required parameters, 13
wildcards and, 12

if statements
bulk-newmailbox.v2.ps1, 446–448
bulk-newmailbox.v3.ps1, 451–452
newuser-publicfolder.ps1, 458–460
testing variable values, 436–437

IIS virtual directory, 184
IMAP4 (Internet Message Access Protocol

version 4)
CAS enabling, 167–170

client-access attributes, enabling/disabling,
120–121

Exchange 2007 access methods, 165
Set-CASMailbox cmdlet and, 110–111
SSL and, 170

IMF (Intelligent Message Filter), 268
Import-Csv cmdlet

bulk creation of mailboxes, 131–132
bulk-newmailbox.v3.ps1, 452
creating mailbox-enabled user accounts, 430
reading in files and, 466–467

Import-ExchangeCertificate cmdlet, 175
Import-Mailbox cmdlet, 112–113
InfoPath, 152
input values, parameters, 10–12
integers (numbers), parameter input values, 10
Intelligent Message Filter (IMF), 268
Internet Message Access Protocol version 4.

See IMAP4 (Internet Message Access
Protocol version 4)

I/O operations per second (IOPS), Exchange
2007, 66

IOPS (I/O operations per second), Exchange
2007, 66

IP Allow List
Edge Transport server, 267
Test-IPAllowListProvider cmdlet,

395–396
IP Allow List Provider, 267
IP Block List

Edge Transport server, 268
Test-IPBlockListProvider cmdlet,

396–397
IP Block List Provider, 268
IPM_Subtree, public folder trees, 150, 155
iSCSI, limitations for passive storage, 331
Item cmdlets, working with Registry keys,

58
items, PowerShell navigation, 41, 44

J
Journaling Rule agent, 266
junk mail

content filtering, 268–270
Outlook Junk E-Mail filter, 270

junk mail

bindex.indd 507bindex.indd 507 12/17/07 4:09:48 PM12/17/07 4:09:48 PM

508

K
KCC (Knowledge Consistency Checker), 300
keys, Registry, 58
Knowledge Consistency Checker (KCC), 300

L
LCR (Local Continuous Replication), 140

enabling databases, 334–335
enabling storage groups, 335
failback, 359–360
failover, 353–354
installing, 334
overview of, 330–332
reasons for using, 332
seeding process, 347–349

LDAP (Lightweight Directory Access Protocol),
238

least cost algorithm
coexistence routing and, 322
Exchange 2003 and, 319
fan-out in routing and, 308
hub sites and, 305, 316–317
site links and, 314

/LegacyRoutingServer, Setup.com, 74
licenses, Edge Transport server, 250
Lightweight Directory Access Protocol (LDAP),

238
like, comparison operator, 24
link state, 297, 318–319
link state islands, 319–322
LinkAccess, 186–189
linked mailboxes, creating, 117–119
list format. See Format-List
List parameter, Get-EventLog cmdlet, 61
LLR (Lost Log Resiliency), 353
load balancing, user accounts across mailbox

servers, 449–454
Local (MAPI) Delivery, Hub Transport server,

194
Local Continuous Replication. See LCR (Local

Continuous Replication)
location, PowerShell item, 41
log shipping, 328, 346
LogName parameter, Get-EventLog

cmdlet, 61

Lost Log Resiliency (LLR), 353
lt (less than), comparison operator, 24
LUNs, logging, 331

M
mail contacts

creating, 126–127
Get-MailContact cmdlet, 89–90
modifying, 127–128
overview of, 100

Mail Exchanger (MX) records, 237
mail forest contact, 100
mail routing. See routing, Exchange Server

2007
mail users

creating, 126–127
modifying, 127–128
overview of, 100–101

Mailbox server roles, troubleshooting,
405–409

cmdlets for, 405
Test-ExchangeSearch cmdlet, 408–409
Test-Mailflow cmdlet, 406–407
Test-MapiConnectivity cmdlet,

405–406
Mailbox servers, 217–234

CCR and, 80
CCR installation and, 337
clustered. See CMS (Clustered Mailbox

Server)
database cmdlets, 219
database configuration, 220–222
database creation, 219–220
database removal, 222
Exchange 2007 software requirements, 69
load balancing user accounts across mailbox

servers, 449–454
mail restoration, 228–231
mailbox management cmdlets, 222–225
order of deploying Exchange roles, 77
overview of, 217–234
public folders, 231–232
RSG cmdlets, 225–226
RSG creation, 225–226
RSG database creation, 227
RSG database, mounting, 228

KCC (Knowledge Consistency Checker)

bindex.indd 508bindex.indd 508 12/17/07 4:09:49 PM12/17/07 4:09:49 PM

509

In
de

x

RSG database restoration, 227–228
SCC and, 80
SCR and, 345
storage group cmdlets, 217–218
storage group creation, 218
storage group, moving, 218–219
storage group removal, 219
summary, 233

mailbox store (database)
cmdlets, 219
configuring, 220–222
creating, 219–220
removing, 222

mailbox-enabled recipients, 96
mailbox-enabled user accounts, 425–443

CSV file for, 430
examining bulk-newmailbox.v1.ps1

script, 435–441
improvements in bulk-newmailbox.v1
.ps1 script, 432–434

overview of, 425–426
parameters for New-Mailbox, 428–429
running improved script, 441–443
running simple script, 430–431
simple script for, 426–428

mailboxes
bulk modification of mailbox attributes, 136
bulk reconnection of, 136–137
creating bulk, 131–132
creating new linked mailbox, 117–119
creating resource mailbox, 122–123
creating user mailbox, 113–119
Enable-Mailbox cmdlet, 108–109
Export-Mailbox cmdlet, 111–112
Get-Mailbox cmdlet, 88–89
Import-Mailbox cmdlet, 112–113
management cmdlets, 222–225
managing user mailbox properties, 121–122
modifying resource mailbox, 123–126
modifying user mailbox, 119–122
New-Mailbox cmdlet, 106–107
Remove-Mailbox cmdlet, 109–110
Set-CASMailbox cmdlet, 110–111
Set-Mailbox cmdlet, 107–108
templates for, 133–134

mail-enabled groups
nonuniversal groups, 103
universal distribution groups, 102

universal security groups, 102–103
mail-enabled public folders, 158
mail-enabled recipients, 96
mailflow, testing, 406–407
Majority Node Set. See MNS (Majority

Node Set)
Management Tools, Exchange 2007, 68
MAPI (Messaging Application Programming

Interface)
Local (MAPI) Delivery, 194
Set-CASMailbox cmdlet and, 110–111
Test-MapiConnectivity cmdlet,

405–406
MAPI Delivery, routing delivery types, 303
memory, Exchange 2007 hardware

requirements, 67
message expiration timeout settings, Hub

Transport servers, 201
Message Journal Reports, Microsoft Exchange

Recipient, 101
message tracking

Exchange 2007 routing, 310–313
Get-MessageTrackingLog cmdlet,

417–420
messages

categorization, Edge Transport servers, 238
categorization, Hub Transport servers, 194
Get-Message cmdlet, 414–417

Messaging Application Programming
Interface. See MAPI (Messaging
Application Programming Interface)

methods, 487
Microsoft Cluster Server. See MSCS

(Microsoft Cluster Server)
Microsoft Exchange Active Directory Topology

service, 300
Microsoft Exchange Recipient, 101
Microsoft Exchange Security Groups, 104–105
Microsoft Identity Integration Server (MIIS),

100
Microsoft InfoPath, 152
Microsoft Management Console version 3.0

(MMC 3.0), 37
Microsoft Office SharePoint Services

as alternative to public folders, 152
LinkAccess for integrating with OWA,

186–189
Microsoft Outlook. See Outlook

Microsoft Outlook

bindex.indd 509bindex.indd 509 12/17/07 4:09:49 PM12/17/07 4:09:49 PM

510

Microsoft SQL Server, 328
MIIS (Microsoft Identity Integration Server),

100
MMC (Microsoft Management Console) 3.0,

37
MNS (Majority Node Set)

CCR configuration, 338
FSW as update for, 339
quorum model in Windows Server 2003, 329

MNSFileShareCheckInterval parameter,
341

MNSFileShareDelay parameter, 341
/mode or /m, Setup.com, 72
modes, setup, 72
monitoring continuous replication

cluster status, 349–350
cmdlets for, 349
Performance Monitor, 352
replication status, 350–352

monitoring script, for simple monitoring,
483–484

MoveAllReplicas.ps1, 158
Move-ClusteredMailboxServer cmdlet,

385
Move-StorageGroup cmdlet, 218–219
MSCS (Microsoft Cluster Server)

cluster installation for, 375–380
cluster service account, creating, 366–367
DNS cluster record, creating, 367–369
formatting shared disk for, 372–375
hardware requirements for, 364
installation steps, 365–366
network interfaces, configuring, 372
SCCs residing in, 363
software requirements for, 364–365

MSExchangeIS key, 57–60
MSExchangetransport.exe (Process Manager),

204
MX (Mail Exchanger) records, 237

N
Name parameter
Get-Command cmdlet, 17
Get-Help cmdlet, 15–16

named parameters, 13–14
names, verb-noun pair in cmdlet names, 9

namespace, creating for external access, 181
NDR (non-delivery report), 302
.NET Framework, 485–496

accessing PowerShell from, 485–486
Exchange 2007 software requirements, 68
overview of, 485
as power behind PowerShell, 5–6
problem solving with PowerShell and .NET,

495–496
starting web project, 486–487
Windows PowerShell runspace, 487–495

Net User, 137
network interfaces

configuring for cluster use in CCR, 342
configuring in MSCS install, 370–371

New Mailbox Wizard, EMC, 115–116
New verb

creating user mailbox, 113–119
verb names, 9

New-Alias cmdlet, 49–50
New-DistributionGroup cmdlet, 128
New-DynamicDistributionGroup cmdlet,

129–130
New-EdgeSubscription cmdlet, 239,

242–243
-Newest parameter, Get-EventLog cmdlet,

61
New-ExchangeCertificate cmdlet,

172–174
New-Item cmdlet, 53, 58
New-Mailbox cmdlet

creating new linked mailbox, 117–119
creating new resource mailbox, 122
creating new user mailbox, 113–117
creating new user object, 106–107
parameters for, 428–429

New-MailboxDatabase cmdlet, 219–220,
227

New-MailContact cmdlet, 126–127
New-Object cmdlet, 469
New-PublicFolder cmdlet, 150–152, 461
New-PublicFolderDatabase cmdlet,

140–141, 232
New-ReceiveConnector cmdlet, 202–203,

204–205
New-SendConnector cmdlet, 203, 208
New-StorageGroup cmdlet

creating RSG database, 226

Microsoft SQL Server

bindex.indd 510bindex.indd 510 12/17/07 4:09:50 PM12/17/07 4:09:50 PM

511

In
de

x

creating SCR storage group, 345
creating storage groups, 218

New-TimeSpan cmdlet, 483
New-UMAutoAttendant cmdlet, 288–289
New-UMDialPlan cmdlet, 275
New-UMIPGateway cmdlet, 275–276
New-UMMailboxPolicy cmdlet, 276
newuser-publicfolder.ps1

examining, 457–462
running, 462–464
script contents, 455–457

Nltest utility, 314
Non_IPM_Subtree, public folder trees, 150
Non-Cached Mode, CAS disabling Outlook

modes, 165–166
non-delivery report (NDR), 302
Non-Paged Memory (NPM(K)), 54
Non-SMTP Gateway Delivery, 303
nonuniversal groups, mail-enabled, 103
/NoSelfSignedCertificate, Setup.com,

74
notlike, comparison operator, 24
noun names, 10
Noun parameter, Get-Command cmdlet,

17–18
NTFS, Exchange 2007 hardware requirements,

67
numbers (integers), parameter input values, 10

O
OAB (Offline Address Book), 184–186

creating, 184–185
generating, 186
overview of, 184

objects
collecting user data objects based on

organizational units, 23–24
defined, 487
filtering, 24–25
PowerShell objects based on .NET objects, 5
viewing AD object properties, 165

Office Outlook 2007, 139
Office SharePoint Services

as alternative to public folders, 152
LinkAccess for integrating with OWA,

186–189

Offline Address Book. See OAB (Offline
Address Book)

/on, Setup.com, 73
“one-liners,” 24
operating systems (OSs), Exchange 2007

software requirements, 68
optical drive, Exchange 2007 hardware

requirements, 67
optional parameters, 13
or operator, multiple test conditions and, 25
Organization Configuration node, EMC, 37
/organization name, Setup.com, 73
organizational units

collecting user data objects based on, 23–24
Microsoft Exchange Security Groups,

104–105
OSs (operating systems), Exchange 2007

software requirements, 68
Out-File cmdlet, 47, 468
Out-Host cmdlet, 45
Outlook

CAS disabling Outlook modes, 165–166
CAS disabling Outlook versions, 166–167
/EnableLegacyOutlook for Outlook

clients, 74
Outlook 2007

Autodiscover and, 177–178
E-mail AutoConfiguration, 179
public folders and, 139
upgrading e-mail clients to, 152
web-based distribution, 184

Outlook Anywhere
client access to, 183–184
Exchange 2007 access methods, 165
SSL and, 170

Outlook Junk E-Mail filter, 270
Outlook Web Access. See OWA (Outlook Web

Access)
output, 45–47

controlling, 26
list format for displaying, 27, 47
raw vs. formatted, 45
table format for displaying, 46

overload methods, 488
OWA (Outlook Web Access)

client access to, 163
enabling/disabling client-access attributes,

120–121

OWA (Outlook Web Access)

bindex.indd 511bindex.indd 511 12/17/07 4:09:50 PM12/17/07 4:09:50 PM

512

OWA (Outlook Web Access) (continued)
Exchange 2007 access methods, 165
LinkAccess for integrating with SharePoint

Services and file shares, 186–189
proxy and redirection and, 181
SSL and, 170
Test-OwaConnectivity cmdlet, 180,

402–403

P
/p, setup switches, 71
/pad, setup switches, 71
page files, Exchange 2007 hardware

requirements, 66, 67
Paged memory (PM(K)), 54
param keyword, 51, 427, 435
parameters, 10–12

continuous replication, 355
input values, 10–12
optional and required parameters, 13
overview of, 10
positional and named parameters, 13–14
receive connectors, 202–203
send connectors, 203
shortcuts for parameter names, 14–15
syntax details for cmdlets and its

parameters, 20
tab expansion feature for entering, 21–23

partitions, preparing shared disk for MSCS
cluster, 372–375

$password variable, 427–428
passwords, stored as string value, 467
/pd, setup switches, 71
Performance Monitor, 352
permissions

domain preparation and, 71
permission groups for transport servers,

206–207
send connectors, 210

permissions, public folders
administrative folder permissions, 146–148
client folder permissions, 145–146
overview of, 144
top-level folders, 148–149

PFDavAdmin, 139
pipelines

adding multiple commands to, 489
CreatePipeline method, 488–489
for passing data between cmdlets, 23–24

/pl, setup switches, 71
policies, Hub Transport

accepted domains, 214
e-mail addresses, 214
overview of, 213–214

POP3 (Post Office Protocol version 3)
CAS enabling, 167–170
enabling/disabling client-access attributes,

120–121
Exchange 2007 access methods, 165
Set-CASMailbox cmdlet and, 110–111
SSL and, 170

ports
Edge Transport server, 245, 250
Hub Transport server, 253, 255

positional parameters, 13–14
Post Office Protocol version 3. See POP3

(Post Office Protocol version 3)
PowerGadgets, 479–480
PowerShell, getting started

aliases, 23
cmdlets, 8–9
command-line interface, 6–8
data types, finding, 25–26
Exchange Management Shell, preparing, 30
filtering objects, 24–25
Get-Command cmdlet for finding cmdlets,

17–19
Get-Help cmdlet for finding cmdlets,

15–17
help files, supplementary to cmdlet help, 21
help information, effective use of, 19–20
history of, 4
list format for displaying properties, 27
.NET Framework as power behind, 5–6
noun names, 10
optional and required parameters, 13
output, controlling, 3–4

PowerShell, getting started
parameter details for cmdlets, 20–21
parameters, 10–12
pipelines, 23–24
positional and named parameters, 13–14
property names, finding, 25–26
references, 31

OWA (Outlook Web Access) (continued)

bindex.indd 512bindex.indd 512 12/17/07 4:09:51 PM12/17/07 4:09:51 PM

513

In
de

x

running scripts, 29–30
shell limitations, 5
shells vs. GUIs, 4
shortcuts for parameter names, 14–15
summary, 31
syntax details for cmdlets and parameters,

20
tab expansion feature for entering cmdlets

and parameters, 21–23
table format for displaying properties, 28–29
verb names, 9–10
verb-noun pair in cmdlet names, 9

powershell.exe, 6
PRA (Purported Responsible Address), 270
/PrepareAD, setup switches, 71
/PrepareAllDomains, setup switches, 71
/PrepareDomain, setup switches, 71
/PrepareLegacyExchange

Permissions, setup switches, 71
/PrepareSchema, setup switches, 71
Priority queueing, Hub Transport servers, 200
Process Manager (MSExchangetransport

.exe), 204
processes, controlling in Windows OS, 54–55
processors, Exchange 2007 hardware

requirements, 67
profiles, Exchange Management Shell, 52–54
progress bar

adding to script, 432
foreach loops and, 440–441

properties
finding property names, 25–26
list format for displaying, 27
managing user mailbox properties, 121–122
table format for displaying, 28–29
viewing AD object properties, 165

providers, exposing PowerShell drives, 43–44
proxies, 181–183
/ps, setup switches, 71
.ps1, PowerShell script file extension, 29
.pst folders

export mailbox content to, 111–112
import mailbox data from, 112–113

public folders, 139–160
AD sites and, 300
administrative folder permissions, 146–148
client folder permissions, 145–146
creating, 150–152

database administration, 140
database creation, 140–141
database removal, 142–144
/EnableLegacyOutlook, 74
folder and content administration, 149–150
getting/setting public folder database

information, 142–144
hierarchy of, 155–156
installing, 140
Mailbox server role and, 231–232
mail-enabling, 101, 158
overview of, 139
permissions, 144
removing, 152–153
replication, 153–155
reports, 158–160
scripts, 157–158
stopping replication, 156–157
summary, 160
top-level folders, 148–149
trees, 150
working with, 150

public folders, for new users, 454–464
cmdlets for, 454
examining newuser-publicfolder.ps1,

457–462
newuser-publicfolder.ps1, script

contents, 455–457
running newuser-publicfolder.ps1,

462–464
Purported Responsible Address (PRA), 270

Q
QDB (Query Based Distribution Groups), 103.

See also dynamic distribution groups
quorum model, in Windows Server 2003, 329
Quota limit messages, Microsoft Exchange

Recipient, 101
quotas, mailbox store, 220

R
/r, Setup.com, 72–73
RAM, 66
reading in files, 465–467

reading in fi les

bindex.indd 513bindex.indd 513 12/17/07 4:09:51 PM12/17/07 4:09:51 PM

514

receive connectors
configuring, 203–206
creating new, 202–203
default connectors, 204
linking with send connectors, 210–211
relay restrictions and submit permissions,

206–207
routing inbound messages from Internet,

246–247
routing messages from Hub Transport

servers, 248–249
Recipient Configuration node, EMC, 37, 93–94
Recipient filtering, Edge Transport server, 271
Recipient scope, in Exchange Management

Shell, 84–86
Recipient Update Service (RUS), 71
recipients

bulk mailbox creation, 131–132
bulk modification of mailbox attributes, 136
bulk operations, generally, 130
bulk reconnection of mailboxes, 136–137
bulk-enabling existing users, 135–136
defined, 84
dynamic distribution groups, 103–105,

129–130
Enable-Mailbox cmdlet, 108–109
Export-Mailbox cmdlet, 111–112
Get-DistributionGroup cmdlet, 91–92
Get-DynamicDistributionGroup

cmdlet, 92–93
Get-Group cmdlet, 90–91
Get-Mailbox cmdlet, 88–89
Get-MailContact cmdlet, 89–90
Get-Recipient cmdlet, 87–88
group objects, 101
group objects, creating/modifying, 128–129
Import-Mailbox cmdlet, 112–113
mail users and mail contacts, creating,

126–127
mail users and mail contacts, modifying,

127–128
mailbox-enabled, 96
New-Mailbox cmdlet, 106–107
nonuniversal groups, 103
overview of, 83–84
Recipient scope in Exchange Management

Shell, 84–86
Remove-Mailbox cmdlet, 109–110

resource mailboxes, creating, 122–123
resource mailboxes, modifying, 123–126
Set-CASMailbox cmdlet, 110–111
Set-Mailbox cmdlet, 107–108
summary, 137
templates for mailboxes, 133–134
universal distribution groups, 102
universal security groups, 102–103
user and group objects, 86–87
user mailboxes, creating, 113–119
user mailboxes, modifying, 119–122
user objects, 96–101
user objects, creating/modifying, 105–106

RecipientTypeDetails property, 83
Recovery Storage Groups. See RSG (Recovery

Storage Groups)
redirection, client access and, 181–183
regedit.exe, 57
Registry, in Windows OS, 57–60
remote domains

Edge Transport server, 250
Hub Transport server, 255

Remove, verb names, 9
Remove-DistributionGroup cmdlet, 129
Remove-DistributionGroupMember

cmdlet, 129
Remove-EdgeSubscription cmdlet, 243
Remove-ExchangeCertificate cmdlet, 172
Remove-Item cmdlet, 58
Remove-ItemProperty cmdlet, 59
Remove-Mailbox cmdlet

disabling, disconnecting, removing mailboxes,
119–120

modifying resource mailboxes, 123
removing AD and Exchange mailbox accounts,

223
removing user account associated with

mailbox, 109–110
Remove-MailboxDatabase cmdlet, 222
Remove-MailContact cmdlet, 127
Remove-PublicFolder cmdlet, 152
Remove-PublicFolderAdministrative

Permission cmdlet, 148
Remove-PublicFolderDatabase cmdlet,

144
Remove-ReceiveConnector cmdlet, 206
RemoveReplicaFromPFRecursive.ps1,

157

receive connectors

bindex.indd 514bindex.indd 514 12/17/07 4:09:51 PM12/17/07 4:09:51 PM

515

In
de

x

Remove-SendConnector cmdlet, 210
Remove-StorageGroup cmdlet, 219
Remove-UM cmdlets, 292–293
/RemoveUmLanguagePack, Setup.com, 76
ReplaceReplicaOnPFRecursive.ps1, 157
replication, continuous. See continuous

replication
replication, public folders

data, 153–155
hierarchy, 155–156
overview of, 139
stopping, 156–157

replication topology, KCC and, 300
reporting tasks

mailbox size, 475–480
online defragmentation and backups,

471–475
overview of, 471

reports, public folders, 158–160
required parameters, 13
resource mailboxes

converting shared mailbox to, 99
creating, 122–123
equipment mailboxes, 98–99
modifying, 123–126

resource management, cluster resources,
383–385

response banner, for Hub transport server, 207
restore-Mailbox cmdlet, 228–231
Restore-StorageGroupCopy cmdlet, 354,

356–357
-ResultSize parameter, Get-Mailbox

cmdlet, 12
Resume-PublicFolderReplication

cmdlet, 156–157
Resume-Queue cmdlet, 194
Retry-Queue cmdlet, 194
-Role parameter, Get-Help cmdlet, 16–17,

38–39
roles. See server roles
/roles, Setup.com, 72–73
room mailboxes, 122
root folders, 148
route selection process, in Exchange 2007,

301–302
routing, Exchange Server 2007, 297–326

AD site links, 314–316
AD site-based routing, 300–301

backoff routines, 305–307
cmdlets, 298
coexistence routing, 322–325
coexistence with Exchange 2003, 317–318
common errors, 308–309
comparing Exchange versions, 299
dedicated AD sites for Exchange, 314
delayed fanout, 307–308
determining AD site membership, 313–314
hub sites, 304–305
hub sites, working with, 316–317
link state and, 318–319
link state islands, 319–322
Log Viewer, 309–310
message tracking, 310–313
next hop selection process, 302–304
overview of, 297
route selection process, 301–302
summary, 325

routing group connectors, Hub Transport, 212
Routing Log Viewer, Exchange 2007, 309–310
RPC over HTTP. See Outlook Anywhere
RSG (Recovery Storage Groups)

cmdlets, 225–226
creating, 226
creating RSG database, 227
mounting, 228
restoring, 227–228

runspace, 488
RUS (Recipient Update Service), 71

S
/s, Setup.com, 73
SANs (Storage Area Networks), 330
SANs (Subject Alternate Names), 171
SCCs (Single Copy Clusters), 363–388

CCR compared with, 330
cluster designs and, 327
cluster installation for MSCS, 375–380
in Exchange clustering, 328
formatting shared disk for MSCS, 372–375
hardware requirements for MSCS, 364
installing Exchange on, 380–383
installing MSCS and, 365–371
mailbox roles and, 80
overview of, 363

SCCs (Single Copy Clusters)

bindex.indd 515bindex.indd 515 12/17/07 4:09:52 PM12/17/07 4:09:52 PM

516

SCCs (Single Copy Clusters) (continued)
resource management, 383–385
script for installing/configuring, 385–388
software requirements for MSCS, 364–365
summary, 388

Schema Master, Exchange 2007 domains,
70, 71

SCL (spam confidence level), 237, 266, 269
SCP (service connection point), 177–178
SCR (Standby Continuous Replication)

failback, 360–361
failover, 357–359, 496
installing, 345
options for applying, 333
overview of, 332–333
reasons for using, 332
seeding process, 347–349

screen resolution, Exchange 2007 hardware
requirements, 67

ScriptBlock, 490–492
scripts

administrative. See administative scripts
client folder permissions, 145–146
lack of integration between shell and

scripting languages, 5
public folders, 157–158
running, 29–30
Sysocmgr.exe, 337

SDK (software development kit), Windows
PowerShell SDK, 485–486

search service, 408–409
Secure Sockets Layer (SSL)

CAS configuration and, 170
IIS not requiring, 184

security groups
Microsoft Exchange Security Groups,

104–105
universal security groups, 102–103

seeding
cmdlets for, 346
defined, 328
process of, 347–349
when required, 346

Select-Object cmdlet, 479, 483
send connectors

configuring, 208–210
configuring for Edge servers, 253
creating new, 203

linking with receive connectors, 210–211
permissions and authentication settings, 210
routing messages from Internet to Hub

Transport servers, 247–248
routing outbound messages to Internet,

245–246
SMTP Send Connector, 194

sender filtering, Edge Transport server, 270
Sender Policy Framework (SPF), 398
Sender Reputation, Edge Transport server, 271
SenderID

Edge Transport server, 270
overview of, 398
Test-SenderID cmdlet, 397–398

Server Configuration node, EMC, 37
server health, troubleshooting Exchange

2007, 390–392
server limits, Hub Transport, 201
server roles

Client Access. See CAS (Client Access
Server)

Edge Transport. See Edge Transport server
Exchange Public folder Administrators role,

149
Exchange roles during server installation, 72
Hub Transport. See Hub Transport server
Mailbox. See Mailbox servers
sequence for installing, 77
Unified Messaging. See UM (Unified

Messaging) server
service connection point (SCP), 177–178
services

cmdlets for managing, 56
controlling in Windows OS, 55–56

Set verb
for gathering system and application data,

411
verb names, 9

Set-ADSite cmdlet, 212–213, 317
Set-Alias cmdlet, 49–50
Set-CASMailbox cmdlet

enabling/disabling client-access attributes,
120–121

LinkAccess and, 188
setting client access-related attributes,

110–111
user settings for client access, 164–165

Set-ClientAccessServer cmdlet, 178

SCCs (Single Copy Clusters) (continued)

bindex.indd 516bindex.indd 516 12/17/07 4:09:52 PM12/17/07 4:09:52 PM

517

In
de

x

Set-Contact cmdlet, 128
Set-ImapSettings cmdlet, 168–170
Set-ItemProperty cmdlet, 59
Set-Location cmdlet

accessing Registry as drive, 57
changing from current location to new

drive, 44
Set-Mailbox cmdlet

bulk modification of mailbox attributes, 136
converting shared mailbox to resource

mailbox, 99
modifying resource mailbox, 123
parameters for input values, 11
setting existing mailboxes, 107–108

Set-MailboxDatabase cmdlet, 220–221,
470

Set-MailboxServer cmdlet, 310, 354–355
Set-OabVirtual Directory cmdlet, 184
Set-OfflineAddressBook cmdlet,

184–186
Set-OWAVirtualDirectory cmdlet,

187–189
Set-PopSettings cmdlet, 168
Set-PublicFolder cmdlet, 153–154
Set-PublicFolderDatabase cmdlet,

143–144
Set-ReceiveConnector cmdlet, 206–207
Set-ResourceConfig cmdlet, 123, 125
Set-RoutingGroupConnector cmdlet, 210
Set-SendConnector cmdlet, 210
Set-TransportAgent cmdlet, 264
Set-TransportServer cmdlet

configuring Hub Transport server, 197
configuring message tracking, 310
modifying transport server limits, 201
routing and, 306–307

Set-UMAutoAttendant cmdlet, 290
Set-UMDialPlan cmdlet, 278–281
Set-UMIPGateway cmdlet, 281–282
Set-UMMailboxPIN cmdlet, 286–287
Set-UMMailboxPolicy cmdlet, 282–284
setup switches

for clustered installs, 76
for domain preparation, 70–71
for server installation, 72–76

Setup.com, 72–76
Set-User cmdlet

changing mail contact attributes, 128

Identity parameter and, 13
parameters for input values, 11

shared mailboxes, 123
shells

vs. GUIs, 4
limitations of, 5

shortcuts, for parameter names, 14–15
simplebulk-newmailbox.ps1, 426–428,

430–431
Single Copy Clusters. See SCCs (Single Copy

Clusters)
single server deployment, Exchange 2007, 78
site link costs, AD sites, 314–316
sites, AD. See AD sites
SmartHost Delivery, 303
SMTP connectors, 208. See also send

connectors
SMTP Receive, Hub Transport server, 192
SMTP relay, 303–304
SMTP Send/Remote Delivery, Hub Transport

server, 194–197
SMTPClient object, 469
software requirements

Exchange 2007, 68–69
MSCS (Microsoft Cluster Server), 364–365

/SourceDir, Setup.com, 73
spam confidence level (SCL), 237, 266, 269
spam prevention

Anti-Spam agent, 266–267
overview of, 395
Test-IPAllowListProvider cmdlet,

395–396
Test-IPBlockListProvider cmdlet,

396–397
Test-SenderID cmdlet, 397–398

SPF (Sender Policy Framework), 398
SQL Server, 328
SSL (Secure Sockets Layer)

CAS configuration and, 170
IIS not requiring, 184

standard deployment, Exchange 2007, 78–80
standards, script for applying default settings,

469–471
Standby Continuous Replication. See SCR

(Standby Continuous Replication)
Start-ClusteredMailboxServer cmdlet,

384
Start-EdgeSubscription cmdlet, 241, 243

Start-EdgeSubscription cmdlet

bindex.indd 517bindex.indd 517 12/17/07 4:09:53 PM12/17/07 4:09:53 PM

518

Start-Transcript cmdlet, 54
Status, of services, 56
Stop-Clustered MailboxServer cmdlet,

349–350
Stop-ClusteredMailboxServer cmdlet,

383–384
Stop-Process cmdlet, 55
Storage Area Networks (SANs), 330
storage groups

cmdlets, 217–218
creating, 218
creating for SCR, 345
enabling for LCR, 335
enabling for SCR, 346
moving, 218–219
recovering with LCR, 331
removing, 219

strings (words), parameter input values, 10
Subject Alternate Names (SANs), 171
subkeys, Registry, 58
Submission Queue, Hub Transport server,

193–194
subscription, edge subscription, 237, 239
Suspend-PublicFolderReplication

cmdlet, 156–157
Suspend-Queue cmdlet, 194
synchronization. See EdgeSync
syntax details, for cmdlets and its parameters,

20
Syntax parameter, Get-Command cmdlet,

19
Sysocmgr.exe, 337
system data, gathering with Get and Set

cmdlets, 411
system health, troubleshooting Exchange

2007, 393–395
system policies, PowerShell alternative to,

469–471

T
/t, Setup.com, 73
tab expansion feature, for entering cmdlets

and parameters, 21–23
table format. See Format-Table
/TargetDir, Setup.com, 73
Task Manager, 54

tasks, Exchange Management Shell
administrative cmdlets, 8

Test-ActiveSyncConnectivity cmdlet,
400–402

Test-EdgeSubscription cmdlet, 240, 244
Test-EdgeSynchronization cmdlet,

409–410
Test-ExchangeSearch cmdlet, 408–409
Test-IPAllowListProvider cmdlet,

395–396
Test-IPBlockListProvider cmdlet,

396–397
Test-Mailflow cmdlet, 406–407
Test-MapiConnectivity cmdlet,

405–406
Test-OutlookWebServices cmdlet,

399–400
Test-OwaConnectivity cmdlet, 180,

402–403
Test-ReplicationHealth cmdlet,

351–352
Test-SenderID cmdlet, 397–398
Test-ServiceHealth cmdlet, 390
Test-SystemHealth cmdlet, 393–395
Test-UMConnectivity cmdlet, 410–411
Test-WebServicesConnectivity cmdlet,

404
time and date, cmdlets for managing, 483
TLS (Transport Layer Security), 239
Toolbox node, EMC, 38
top-level folders, public folders, 148–149
transport agents
Enable-TransportAgent cmdlet,

264–265
Get-TransportAgent cmdlet, 264
overview of, 263
Set-TransportAgent cmdlet, 264

transport architecture
Hub Transport server, 192
routing and, 299

Transport Layer Security (TLS), 239
transport pipeline

Categorizer, 194
Local (MAPI) Delivery, 194
SMTP Receive, 192–194
SMTP Send/Remote Delivery, 194–197
Submission Queue, 193–194

Tree view, EMC, 37

Start-Transcript cmdlet

bindex.indd 518bindex.indd 518 12/17/07 4:09:53 PM12/17/07 4:09:53 PM

519

In
de

x

troubleshooting Exchange 2007, 389–422
anti-spam functions, 395–398
CAS functions, 399–403
Edge synchronization, 409–410
event logging levels, 420–422
Get and Set cmdlet for gathering system

and application data, 411
Get-EventLog cmdlet, 412–414
Get-Message cmdlet, 414–417
mailbox server roles, 405–406
mailflow, 406–407
overview of, 389–390
search service, 408–409
server health, 390–392
summary, 422
system health, 393–395
Test-MapiConnectivity cmdlet,

405–406
tracking messages, 417–420
UM (Unified Messaging), 410–411
web service connectivity, 404

U
/u, Setup.com, 73
UCE (Unsolicited Commercial E-mail), 235
UM (Unified Messaging) server, 273–293

AD sites and, 301
/AddUmLanguagePack, 75
architecture and components, 274
AutoAttendants (AA), 288–290
configuring UM dial plan, 278–281
configuring UM IP gateway, 281–282
configuring UM mailbox policy, 282–284
creating UM dial plan, 275
creating UM IP gateway, 275–276
creating UM mailbox policy, 276
disk space requirements and, 67
enabling users, 276–277
Exchange 2007 deployment and, 80
Exchange 2007 software requirements, 69
Get-UM cmdlets for information retrieval,

284–286
order of deploying Exchange roles, 77
overview of, 273–274
/RemoveUmLanguagePack, 76
removing/disabling UM features, 291–293

reviewing configuration, 277–278
summary, 293
Test-UMConnectivity, 410–411
user management, 286–288

UM dial plan, 275, 278–281
UM IP gateway, 275–276, 281–282
UM mailbox policy, 276, 282–284
Undefined, routing delivery types, 303
Unified Communication certificates, 171
universal distribution groups, 102
universal security groups, 102–103
UNIX shells, 4
Unreachable, routing delivery types, 303
Unsolicited Commercial E-mail (UCE), 235
Update-PublicFolderHierarchy cmdlet,

155
Update-Safelist cmdlet, 241
/UpdatesDir, Setup.com, 73
Update-StorageGroupCopy cmdlet, 346, 348
UPN (User Principal Name)

creating mailboxes and, 466
creating new user mailbox and, 117
Enable-Mailbox cmdlet and, 108
UM accounts and, 277

URLs, CAS proxy and redirection, 181–183
user accounts, adding to distribution groups,

443
user accounts, group assignments, 443–449
bulk-newmailbox.v2.ps1, script
contents, 444–445

examining bulk-newmailbox.v2.ps1,
446–448

overview of, 443–449
running bulk-newmailbox.v2.ps1,

448–449
user accounts, load balancing across mailbox

servers, 449–454
examining bulk-newmailbox.v3.ps1,
script contents, 450–453

overview of, 449–450
running bulk-newmailbox.v3.ps1,
script contents, 454

user accounts, mailbox-enabled, 425–443
CSV file for, 430
examining bulk-newmailbox.v1.ps1

script, 435–441
improvements in bulk-newmailbox.v1
.ps1 script, 432–434

user accounts, mailbox-enabled

bindex.indd 519bindex.indd 519 12/17/07 4:09:53 PM12/17/07 4:09:53 PM

520

user accounts, mailbox-enabled (continued)
overview of, 425–426
parameters for New-Mailbox, 428–429
running improved script, 441–443
running simple script, 430–431
simple script for, 426–428

user objects, 96–101
bulk-enabling existing users, 135–136
Connect-Mailbox or Disable-
Mailbox, 97

creating mail user and mail contact,
126–127

creating user mailbox, 113–119
creating/modifying, 105–106
Enable-Mailbox cmdlet, 108–109
equipment mailboxes, 98–99
legacy mailboxes, 98
LinkedMailbox, 97
mail-enabled, 99–101
modifying user mailbox, 119–122
New-Mailbox cmdlet, 106–107
as recipients, 86–87
Remove-Mailbox cmdlet, 109–110
room mailboxes, 98
setting existing mailboxes, 107–108
shared mailboxes, 99
UserMailbox, 96–97

User Principal Name. See UPN (User Principal
Name)

user settings, CAS (Client Access Server),
164–165

UserMailbox, 96–97
users, UM

enabling, 276–277
managing, 286–288

V
validation, 51
variables

automatic, 49
in creating scripts, 427
Exchange Management Shell, 49
lifetime of user-defined variables, 49
PowerShell, 48–49

VB.NET, 485–486

verb names, 9–10
Verb parameter, Get-Command cmdlet,

17–18
verb-noun pair, in cmdlet names, 9
version numbers, 318–319
Virtual Memory (VM(M)), 54
Visual Studio 2005, 486–487

W
web interface, for PowerShell scripts, 495
web services
Test-OutlookWebServices cmdlet,

399–400
Test-WebServicesConnectivity

cmdlet, 404
web-based distribution

CAS providing, 184
Outlook 2007, 184

Where-Object cmdlet
filtering event logs, 62
filtering objects, 24–25
filtering results obtained with
Get-EventLog cmdlet, 472–473

finding property names and data types
when using, 25–26

wildcard certificates, 171
wildcards, 47
Windows 2003 R2 SP2, 337
Windows Application log, 308–309
Windows OSs

event logs, 60–63
Exchange 2007 software requirements,

68
processes, 54–55
Registry, 57–60
services, 55–56

Windows PowerShell, getting started.
See PowerShell, getting started

Windows PowerShell SDK, 485–486
Windows Scheduler (AT), 469
Windows Script Host

lack of integration between shell and
scripting languages, 5

shell history and, 4
Windows Server 2003, 329

user accounts, mailbox-enabled (continued)

bindex.indd 520bindex.indd 520 12/17/07 4:09:54 PM12/17/07 4:09:54 PM

521

In
de

x

Windows Server 2003 Server Clustering
(WSSC), 328

WinRoute, 309
Working Set (WS(K)), 54
Wrap parameter, Format-List, 47
Write-Host cmdlet, 473
WSSC (Windows Server 2003 Server

Clustering), 328

X
X-MS-Exchange-Organization-SenderIdResult:

PASSJunk E-Mail filter, 268–270

X-MS-Exchange-Organization-SenderIdResult:PASSJunk E-Mail fi lter

bindex.indd 521bindex.indd 521 12/17/07 4:09:54 PM12/17/07 4:09:54 PM

badvert.indd 522badvert.indd 522 12/17/07 4:09:25 PM12/17/07 4:09:25 PM

badvert.indd 523badvert.indd 523 12/17/07 4:09:25 PM12/17/07 4:09:25 PM

Now you can access more than 200 complete Wrox books
online, wherever you happen to be! Every diagram, description,
screen capture, and code sample is available with your
subscription to the Wrox Reference Library. For answers when
and where you need them, go to wrox.books24x7.com and
subscribe today!

badvert.indd 524badvert.indd 524 12/17/07 4:09:25 PM12/17/07 4:09:25 PM

	Professional Windows PowerShell for Exchange Server 2007 SP1
	About the Authors
	Credits
	Contents
	Acknowledgments
	Introduction
	Part I PowerShell for Exchange Fundamentals
	Chapter 1: Getting Started with Windows PowerShell
	Chapter 2: Using Exchange Management Shell
	Chapter 3: Using PowerShell to Deploy Exchange Server 2007
	Chapter 4: Working with User and Group Objects
	Chapter 5: Public Folders

	Part II Working with Server Roles
	Chapter 6: Configuring the Client Access Server Role
	Chapter 7: Configuring the Hub Transport Role
	Chapter 8: Configuring the Mailbox Server Role
	Chapter 9: Configuring the Edge Transport Server Role
	Chapter 10: Unified Messaging

	Part III Working with PowerShell in a Production Environment
	Chapter 11: Exchange Server 2007 Routing
	Chapter 12: Working with Continuous Replication
	Chapter 13: Single Copy Clusters
	Chapter 14: Troubleshooting Exchange Issues

	Part IV Automating Administration
	Chapter 15: User, Group, and Public Folder Administration
	Chapter 16: Reporting, Maintenance, and Administration
	Chapter 17: Using the .NET Framework to Automate Exchange PowerShell Tasks

	Index

